Patents by Inventor Kenneth I. Ranney

Kenneth I. Ranney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8994584
    Abstract: Embodiments of the present invention generally relate to motion compensation, and in particular to an autofocus-based compensation (ABC) systems and methods for a ground moving target indication platform. According to one embodiment, a method for autofocus based compensation of range data acquired from an object in motion is provided. The method may include: receiving range data; steering at least one receive beam of the range data in a desired direction; transforming the range data into the range domain; determining the width of a main clutter lobe; excluding data that is not part of the main lobe clutter response; transforming the main-lobe clutter response into the range domain; calculating a phase correction term; and applying the phase correction to the original range data.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: March 31, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kenneth I. Ranney, Geoffrey H. Goldman, Roberto Innocenti, Jerry Lee Silvious
  • Publication number: 20150061926
    Abstract: A method and system for forming an image comprising at least one processor for performing the following: initializing an N by P image array IO by setting all values to a large number; inputting at least one image frame; randomly selecting and removing a subset of pixel locations from the total number of available pixel locations to form a preliminary image array IC; for each pixel location comparing the complex magnitude of each pixel in the image array IO with the magnitude of the corresponding pixel in image array IC, and if the pixel value in the image array IC is smaller than the corresponding pixel in the image array IO or if the IC value equals 0, then the current pixel value in image array IO is replaced by the pixel value in the image array IC; and repeating for a number of iterations to form an image.
    Type: Application
    Filed: May 24, 2012
    Publication date: March 5, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: KENNETH I. RANNEY, ANTHONY F. MARTONE, ROBERTO INNOCENTI, LAM H. NGUYEN
  • Patent number: 8665132
    Abstract: A method and system for generating images from projection data comprising: at least one processor for processing input data, the input data comprising positional data and image data, the image data comprising frequency data for a pre-determined number k frequencies the at least one processor operating to: a) set the frequency data to zero for a predetermined percentage of the k frequencies to form modified frequency data; b) form a preliminary image comprising an array of retained pixel values based upon first positional data and the modified frequency data; c) set the frequency data to zero for a predetermined percentage of the k frequencies to form modified frequency data; d) form a modified image comprising an array of pixels based upon the positional data and the modified frequency data; e) compare the retained array of pixel values to the pixel values of the modified image formed at step (d); f) retain the minimum pixel value at each pixel location to form an image comprising minimum pixel values; g) rep
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 4, 2014
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Kenneth I. Ranney, Lam Huy Nguyen, Jeffrey P. Sichina
  • Publication number: 20140009324
    Abstract: Embodiments of the present invention generally relate to motion compensation, and in particular to an autofocus-based compensation (ABC) systems and methods for a ground moving target indication platform. According to one embodiment, a method for autofocus based compensation of range data acquired from an object in motion is provided. The method may include: receiving range data; steering at least one receive beam of the range data in a desired direction; transforming the range data into the range domain; determining the width of a main clutter lobe; excluding data that is not part of the main lobe clutter response; transforming the main-lobe clutter response into the range domain; calculating a phase correction term; and applying the phase correction to the original range data.
    Type: Application
    Filed: June 5, 2012
    Publication date: January 9, 2014
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Kenneth I. Ranney, Geoffrey H. Goldman, Roberto Innocenti, Jerry Lee Silvious
  • Publication number: 20120182173
    Abstract: A system and method of detecting moving targets comprises transmitting electromagnetic waves rays from a plurality of transmitters at sequential; receiving reflected waves into a plurality of receivers after each transmission; the compilation of the reflected waves from the plurality of receivers for each transmission representing a data frame; forming a signal that monitors changes between the two sets of frames; at least one processor operating to process and compare frames; forming a difference image using a back-projection algorithm; scanning the difference image using a constant false alarm rate (CFAR) window; the CFAR window scanning the entire difference image and identifying a list of points of interest and eliminating the sidelobe artifacts present in the difference image thereby creating CFAR images; processing the CFAR images using morphological processing to create a morphological image; determining the number of clusters present in the morphological image; using K-means clustering to indicate the
    Type: Application
    Filed: January 18, 2011
    Publication date: July 19, 2012
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Anthony F. Martone, Kenneth I. Ranney
  • Publication number: 20120182171
    Abstract: A system and method for locating a moving target behind a wall or barrier comprising: providing a plurality of images of the region of interest; selecting a reference image from the plurality of images; forming a predetermined number of difference images by subtracting the absolute value of the pixels of the reference image from the absolute values of pixels in a predetermined number of the plurality of images; eliminating negative pixel values in the predetermined number of difference images; minimizing the side lobes to form a combined difference image for each reference frame, selecting another reference image from the plurality of images and performing the steps of forming a plurality of difference images, eliminating negative pixel values, averaging the resulting predetermined number of difference images and minimizing the side lobes for each selected reference image to form a set of combined difference images which contain the moving target signature.
    Type: Application
    Filed: September 15, 2011
    Publication date: July 19, 2012
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Anthony F. Martone, Kenneth I. Ranney, Calvin Duc Le
  • Publication number: 20110163912
    Abstract: A method and system for generating images from projection data comprising: at least one processor for processing input data, the input data comprising positional data and image data, the image data comprising frequency data for a pre-determined number k frequencies the at least one processor operating to: a) set the frequency data to zero for a predetermined percentage of the k frequencies to form modified frequency data; b) form a preliminary image comprising an array of retained pixel values based upon first positional data and the modified frequency data; c) set the frequency data to zero for a predetermined percentage of the k frequencies to form modified frequency data; d) form a modified image comprising an array of pixels based upon the positional data and the modified frequency data; e) compare the retained array of pixel values to the pixel values of the modified image formed at step (d); f) retain the minimum pixel value at each pixel location to form an image comprising minimum pixel values; g) rep
    Type: Application
    Filed: March 11, 2011
    Publication date: July 7, 2011
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Kenneth I. Ranney, Jeffrey P. Sichina, Lam H. Nguyen
  • Patent number: 7961134
    Abstract: Self-calibrating an automatic, surveillance-based change detection system operating on noisy imagery comprises detecting a first image co-registered with a second image, wherein the first image and the second image each comprise pixels of a noisy image of a scene; detecting the second image co-registered with the first image, wherein co-registration of the first image with the second image comprises pixels from different images corresponding to a same location within the scene; producing a calibration factor based on the co-registered images; producing a modified ratio of pixel values corresponding to the first image and the second image from the same location within the scene; and comparing the modified ratio to a pre-determined threshold ratio value.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: June 14, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kenneth I. Ranney, Jeffrey Sichina
  • Publication number: 20100238298
    Abstract: Self-calibrating an automatic, surveillance-based change detection system operating on noisy imagery comprises detecting a first image co-registered with a second image, wherein the first image and the second image each comprise pixels of a noisy image of a scene; detecting the second image co-registered with the first image, wherein co-registration of the first image with the second image comprises pixels from different images corresponding to a same location within the scene; producing a calibration factor based on the co-registered images; producing a modified ratio of pixel values corresponding to the first image and the second image from the same location within the scene; and comparing the modified ratio to a pre-determined threshold ratio value.
    Type: Application
    Filed: September 21, 2009
    Publication date: September 23, 2010
    Inventors: KENNETH I. RANNEY, JEFFREY SICHINA