Patents by Inventor Kenneth Ray Clem
Kenneth Ray Clem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7914760Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.Type: GrantFiled: October 8, 2009Date of Patent: March 29, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
-
Publication number: 20100028679Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.Type: ApplicationFiled: October 8, 2009Publication date: February 4, 2010Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R.M. Martens, Stephen Nell Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
-
Patent number: 7622624Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about 55/45 as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.Type: GrantFiled: March 4, 2005Date of Patent: November 24, 2009Assignee: ExxonMobil Chemical Patents Inc.Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
-
Patent number: 7338645Abstract: Disclosed is a method and system for reducing the formation of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by forming and/or coating one or more of the heating devices, feed lines or feed introduction nozzles of/with a material that is resistant to the formation of metal catalyzed side reaction byproducts. The invention also may include monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.Type: GrantFiled: January 21, 2004Date of Patent: March 4, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jeffrey P. Jones, Kenneth Ray Clem, Stephen N. Vaughn, Teng Xu, Jeffrey L. White
-
Patent number: 7335295Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.Type: GrantFiled: June 7, 2004Date of Patent: February 26, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
-
Patent number: 7332636Abstract: The invention provides low metal content molecular sieve catalyst compositions, processes for making such catalysts, and processes for using such catalysts in the conversion of an oxygenate into one or more light olefins. Preferably, the catalyst composition comprises a matrix material having a low metal content. By utilizing matrix materials having low metal contents, the amount of metal-catalyzed side reaction byproducts formed in a reaction system, particularly in an oxygenate-to-olefin reaction system, can be advantageously reduced.Type: GrantFiled: October 16, 2006Date of Patent: February 19, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: Teng Xu, Stephen Neil Vaughn, Richard B. Hall, Kenneth Ray Clem, Jack W. Johnson
-
Patent number: 7329309Abstract: A multi-stage gas-solids separator is configured so that the higher density (solids) output flows of two or more of the separator stages are merged together. The multi-stage separator is preferably composed of cyclone separators, with the diplegs of at least two of the cyclone separator stages merged together.Type: GrantFiled: May 23, 2005Date of Patent: February 12, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jeffrey S. Smith, James H. Beech, Jr., Nicolas P. Coute, Jesse F. Goellner, Kenneth Ray Clem
-
Patent number: 7309806Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.Type: GrantFiled: November 22, 2005Date of Patent: December 18, 2007Assignee: ExxonMobil Chemical Patents Inc.Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
-
Patent number: 7259287Abstract: The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.Type: GrantFiled: August 15, 2003Date of Patent: August 21, 2007Assignee: ExxonMobil Chemical Patents Inc.Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem, Stephen Neil Vaughn
-
Patent number: 7132581Abstract: This invention concerns processes for converting oxygenates to olefins that include a step of pretreating catalyst used in the conversion reaction. A fresh or regenerated metalloaluminophosphate molecular sieve, which is low in carbon content, is pretreated with an aldehyde. The aldehyde forms a hydrocarbon co-catalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to an olefin product.Type: GrantFiled: November 12, 2003Date of Patent: November 7, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Teng Xu, Nicolas P. Coute, Kenneth Ray Clem, Cornelis F. Van Egmond
-
Patent number: 7125821Abstract: The invention provides low metal content molecular sieve catalyst compositions, processes for making such catalysts, and processes for using such catalysts in the conversion of an oxygenate into one or more light olefins. Preferably, the catalyst composition comprises a matrix material having a low metal content. By utilizing matrix materials having low metal contents, the amount of metal-catalyzed side reaction byproducts formed in a reaction system, particularly in an oxygenate-to-olefin reaction system, can be advantageously reduced.Type: GrantFiled: September 5, 2003Date of Patent: October 24, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Teng Xu, Stephen Neil Vaughn, Richard B. Hall, Kenneth Ray Clem, Jack W. Johnson
-
Patent number: 7090081Abstract: The present invention provides various processes for selectively removing undesirably sized catalyst particles from a reaction system. In one embodiment, a plurality of catalyst particles, having a first median particle diameter, is withdrawn from the reaction system and is directed to a separation unit such as a counter flow cyclone separator. In the separation unit, the particles are separated into a small catalyst stream and a large catalyst stream, the small catalyst stream having a second median particle diameter less than the first median particle diameter, and the large catalyst stream having a third median particle diameter greater than the first median particle diameter. At least a portion of the small or large catalyst stream is then directed back to the reaction system in order to maintain a desirable particle size distribution therein.Type: GrantFiled: September 5, 2003Date of Patent: August 15, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stephen Neil Vaughn, Kenneth Ray Clem, Keith Holroyd Kuechler, James R. Lattner
-
Patent number: 7057083Abstract: This invention relates to processes for converting oxygenates to olefins that include a step of pretreating molecular sieve used in the conversion reaction with a C4–C7 olefin composition, which contains one or more C4–C7 olefins. Fresh or regenerated molecular sieve, which is low in carbon content, is contacted or pretreated with the olefin composition to form a hydrocarbon co-catalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to a lighter olefin product.Type: GrantFiled: November 12, 2003Date of Patent: June 6, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Teng Xu, Nicolas P. Coute, Kenneth Ray Clem, Keith H. Kuechler
-
Patent number: 7053260Abstract: The present invention provides a process for making an olefin product from an oxygenate feedstock which comprises: a) contacting the feedstock in a reaction zone with a catalyst comprising i) a molecular sieve having defined pore openings and ii) a CO oxidation metal, under conditions effective to convert the feedstock into an olefin product stream comprising C2–C3 olefins and to form carbonaceous deposits on the catalyst so as to provide a carbon-containing catalyst; b) contacting at least a portion of the carbon-containing catalyst with a regeneration medium comprising oxygen in a regeneration zone comprising a fluid bed regenerator having a dense fluid phase and a dilute fluid phase under conditions effective to obtain a regenerated catalyst portion, wherein the difference between the temperature of the dilute phase and the temperature of the dense phase is no greater than 100° C.; c) introducing said regenerated catalyst portion into said reaction zone; and d) repeating steps a)–c).Type: GrantFiled: June 13, 2002Date of Patent: May 30, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Teng Xu, Paul N. Chisholm, Stephen Neil Vaughn, Shun Chong Fung, Keith Holroyd Kuechler, James R. Lattner, Kenneth Ray Clem, Patrick J. Maher, Dean C. Draemel
-
Patent number: 7045672Abstract: This invention relates to processes for converting oxygenates to olefins and olefins to polyolefins. The processes include a step of pretreating molecular sieve used in the conversion of oxygenate to olefin with a dimethyl ether composition. Fresh or regenerated molecular sieve, which is low in carbon content, is contacted or pretreated with the dimethyl ether composition to form a hydrocarbon co-catalyst within the pore structure of the molecular sieve, and the pretreated molecular sieve containing the co-catalyst is used to convert oxygenate to a lighter olefin product.Type: GrantFiled: November 12, 2003Date of Patent: May 16, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Teng Xu, Kenneth Ray Clem, Keith H. Kuechler
-
Patent number: 7034196Abstract: Disclosed is a method and apparatus for reducing the amount of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.Type: GrantFiled: June 19, 2002Date of Patent: April 25, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kenneth Ray Clem, Stephen N. Vaughn, Teng Xu, Jeffrey L. White
-
Patent number: 7015174Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.Type: GrantFiled: June 20, 2003Date of Patent: March 21, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
-
Patent number: 6897179Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.Type: GrantFiled: June 13, 2003Date of Patent: May 24, 2005Assignee: ExxonMobil Chemical Patents Inc.Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
-
Patent number: 6858129Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.Type: GrantFiled: August 6, 2003Date of Patent: February 22, 2005Assignee: ExxonMobil Chemical Patents Inc.Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
-
Publication number: 20040260140Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.Type: ApplicationFiled: June 20, 2003Publication date: December 23, 2004Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier