Patents by Inventor Kensuke Tsumura

Kensuke Tsumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10716218
    Abstract: A display device is provided with a laminated wiring including a low-resistance conductive film, a low-reflection film mainly containing Al and functioning as a reflection preventing film, and a cap film which are sequentially laminated on a transparent substrate, and an insulting film formed so as to cover the laminated wiring.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 14, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masami Hayashi, Kenichi Miyamoto, Nobuaki Ishiga, Kensuke Nagayama, Naoki Tsumura
  • Patent number: 10641161
    Abstract: A control device for a compression-ignition engine is provided, in which partial compression-ignition combustion including spark ignition (SI) combustion performed by combusting a portion of mixture gas inside a cylinder by spark-ignition followed by compression ignition (CI) combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, an EGR (exhaust gas recirculation) controller configured to change an EGR ratio being a ratio of exhaust gas introduced into the cylinder, and a combustion controller configured to control the EGR controller to increase the EGR ratio when a noise index value specified based on the detected parameter of the detector is confirmed to exceed a given threshold during the partial compression-ignition combustion.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Daisuke Tanaka, Yuichiro Tsumura, Kenichi Nakashima, Taiki Maiguma, Hiroki Morimoto, Masayoshi Higashio, Kensuke Ashikaga
  • Patent number: 10597508
    Abstract: There is provided an electromagnetic wave shielding material excellent in moldability and developing a good electromagnetic wave shielding function. The electromagnetic wave shielding material 1 contains a synthetic resin 11, and an exfoliated graphite 12 being a layered body of graphene and having a number of graphene layers of 200 or smaller and an aspect ratio of 20 or higher.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 24, 2020
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Katsunori Takahashi, Kensuke Tsumura, Kazuhiro Sawa
  • Patent number: 10480479
    Abstract: A control device for an engine in which partial compression-ignition combustion including SI combustion performed by forcibly combusting a portion of mixture gas inside a cylinder followed by CI combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine, is provided. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, a memory configured to store a characteristic defining a relationship between a start timing of the CI combustion and a combustion noise index, and a processor configured to specify a given combustion noise index value based on the detection value of the detector, and control the start timing of the CI combustion.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: November 19, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Kenichi Nakashima, Keitaro Ezumi, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma, Takuji Okumura, Kensuke Ashikaga, Masayoshi Higashio
  • Patent number: 10377838
    Abstract: Provided is a resin composite material in which a carbon material with a graphene structure is dispersed in a synthetic resin and which has a high mechanical strength and a low linear expansion coefficient and a method for producing the resin composite material. A resin composite material contains a synthetic resin and a carbon material with a graphene structure dispersed in the synthetic resin, wherein the synthetic resin is grafted onto the carbon material and the grafting ratio thereof onto the carbon material is 5% to 3300% by weight. A method for producing a resin composite material includes the steps of: preparing a resin composite containing a synthetic resin and a carbon material with a graphene structure dispersed in the synthetic resin; and grafting the synthetic resin onto the carbon material concurrently with or after the step of preparing the resin composite.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 13, 2019
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Nobuhiko Inui, Daisuke Mukohata, Mitsuru Naruta, Kensuke Tsumura, Kazuhiro Sawa, Katsunori Takahashi, Koji Taniguchi
  • Publication number: 20190145306
    Abstract: A control device for a compression-ignition engine is provided, in which partial compression-ignition combustion including spark ignition (SI) combustion performed by combusting a portion of mixture gas inside a cylinder by spark-ignition followed by compression ignition (CI) combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, an EGR (exhaust gas recirculation) controller configured to change an EGR ratio being a ratio of exhaust gas introduced into the cylinder, and a combustion controller configured to control the EGR controller to increase the EGR ratio when a noise index value specified based on the detected parameter of the detector is confirmed to exceed a given threshold during the partial compression-ignition combustion.
    Type: Application
    Filed: October 22, 2018
    Publication date: May 16, 2019
    Inventors: Daisuke Tanaka, Yuichiro Tsumura, Kenichi Nakashima, Taiki Maiguma, Hiroki Morimoto, Masayoshi Higashio, Kensuke Ashikaga
  • Publication number: 20160200017
    Abstract: There is provided a method for manufacturing a resin laminate in which a resin laminate having a foamed resin layer and a non-foamed resin layer can be efficiently manufactured, and a resin laminate having good surface properties can be obtained. A method for manufacturing a resin laminate 14A formed by laminating a foamed resin layer 6B and non-foamed resin layers 7A and 7A and having at least one foamed resin layer 6B, comprising steps of feeding a foamable resin composition 6 in an unfoamed state in a molten state and non-foaming resin compositions 7 and 7 for forming the non-foamed resin layers 7A and 7A into a mold 3 for sheet molding to form a resin laminate; and feeding the above resin laminate in which the foamable resin composition 6 is in an unfoamed state or a foamed state to a sizing die 4.
    Type: Application
    Filed: September 9, 2014
    Publication date: July 14, 2016
    Inventors: Kensuke Tsumura, Ryouji Hatada, Atsushi Wada, Nobuhiko Inui
  • Publication number: 20150337105
    Abstract: There is provided an electromagnetic wave shielding material excellent in moldability and developing a good electromagnetic wave shielding function. The electromagnetic wave shielding material 1 contains a synthetic resin 11, and an exfoliated graphite 12 being a layered body of graphene and having a number of graphene layers of 200 or smaller and an aspect ratio of 20 or higher.
    Type: Application
    Filed: November 26, 2013
    Publication date: November 26, 2015
    Inventors: Katsunori Takahashi, Kensuke Tsumura, Kazuhiro Sawa
  • Publication number: 20150273740
    Abstract: There is provided a method for efficiently and inexpensively providing a resin laminate having a foamed resin layer without using a bonding agent. The method for manufacturing a resin laminate includes the steps of: supplying a molten foamable resin composition 11 in a non-foamed state to a first manifold 4 of a multi-manifold mold 1; supplying a second resin composition 12 for forming a non-foamed resin layer to a second manifold 5; in the multi-manifold mold 1, extruding the foamable resin composition 11 from the first manifold 4 to a merging and laminating part 3 and releasing pressure to thereby cause foaming to form a foamed resin layer 11A; and, before solidification of the foamed resin layer 11, extruding a non-foamed resin layer 12A extruded from the second manifold 5 and laminating the non-foamed resin layer 12A to the foamed resin layer 11A.
    Type: Application
    Filed: September 12, 2013
    Publication date: October 1, 2015
    Inventors: Kensuke Tsumura, Ryouji Hatada, Atsushi Wada, Nobuhiko Inui, Katsunori Takahashi
  • Patent number: 9068037
    Abstract: Disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is dispersed in a synthetic resin and which has high mechanical strength; and a resin composite material obtained by the method. More specifically, disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is uniformly dispersed in a synthetic resin selected from the group consisting of a crystalline resin and an amorphous resin, the method comprising, when the synthetic resin is a crystalline resin, shear-kneading the crystalline resin and the carbon material with a shear-kneading device at a temperature lower than a melting point of the crystalline resin and, when the synthetic resin is an amorphous resin, shear-kneading the amorphous resin and the carbon material with a shear-kneading device at a temperature close to a Tg of the crystalline resin; and a resin composite material obtained by the production method.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: June 30, 2015
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Kazuhiro Sawa, Kensuke Tsumura, Nobuhiko Inui, Katsunori Takahashi, Koji Taniguchi
  • Publication number: 20140378599
    Abstract: Provided is a process for manufacturing a resin composite material having high mechanical strength. The process comprises the steps of: preparing a resin composition comprising a carbon material having a graphene structure, a solvent, and a thermoplastic resin; applying a shearing force to a solid of the resin composition so that the total shearing strain, which is a product of shear rate (s?1) and shear time (s), is 80000 or more either at a temperature lower than the melting point of the thermoplastic resin when the thermoplastic resin is crystalline or at a temperature in the vicinity of Tg of the thermoplastic resin when the thermoplastic resin is amorphous; and kneading the resin composition at a temperature equal to or higher than the boiling point of the solvent to obtain the resin composite material.
    Type: Application
    Filed: March 29, 2013
    Publication date: December 25, 2014
    Inventors: Kazuhiro Sawa, Kensuke Tsumura, Mitsuru Naruta, Nobuhiko Inui, Katsunori Takahashi
  • Publication number: 20140058046
    Abstract: Disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is dispersed in a synthetic resin and which has high mechanical strength; and a resin composite material obtained by the method. More specifically, disclosed herein are: a method for producing a resin composite material in which a carbon material having a graphene structure is uniformly dispersed in a synthetic resin selected from the group consisting of a crystalline resin and an amorphous resin, the method comprising, when the synthetic resin is a crystalline resin, shear-kneading the crystalline resin and the carbon material with a shear-kneading device at a temperature lower than a melting point of the crystalline resin and, when the synthetic resin is an amorphous resin, shear-kneading the amorphous resin and the carbon material with a shear-kneading device at a temperature close to a Tg of the crystalline resin; and a resin composite material obtained by the production method.
    Type: Application
    Filed: October 12, 2012
    Publication date: February 27, 2014
    Applicant: SEKISUI CHEMICAL CO., LTD.
    Inventors: Kazuhiro Sawa, Kensuke Tsumura, Nobuhiko Inui, Katsunori Takahashi, Koji Taniguchi
  • Publication number: 20130316159
    Abstract: There are provided a multilayered resin molded body having high filler orientability and high mechanical strength, and a method for manufacturing the same. A multilayered resin molded body (1) comprising a plurality of laminated resin composition layers (11) comprising a thermoplastic resin (11a) and a filler (15) comprising a carbon material having a graphene structure, the filler (15) being dispersed in the thermoplastic resin (11a), wherein an angle formed by a longitudinal direction of each filler (15) and a direction that is an average of longitudinal directions of all fillers (15) is ±6° or less, and a method for manufacturing the multilayered resin molded body (1).
    Type: Application
    Filed: August 30, 2012
    Publication date: November 28, 2013
    Inventors: Kensuke Tsumura, Kazuhiro Sawa, Katsunori Takahashi, Yoshihiro Inui, Nobuhiko Inui, Koji Taniguchi
  • Publication number: 20130210955
    Abstract: Provided is a resin composite material in which a carbon material with a graphene structure is dispersed in a synthetic resin and which has a high mechanical strength and a low linear expansion coefficient and a method for producing the resin composite material. A resin composite material contains a synthetic resin and a carbon material with a graphene structure dispersed in the synthetic resin, wherein the synthetic resin is grafted onto the carbon material and the grafting ratio thereof onto the carbon material is 5% to 3300% by weight. A method for producing a resin composite material includes the steps of: preparing a resin composite containing a synthetic resin and a carbon material with a graphene structure dispersed in the synthetic resin; and grafting the synthetic resin onto the carbon material concurrently with or after the step of preparing the resin composite.
    Type: Application
    Filed: September 2, 2011
    Publication date: August 15, 2013
    Inventors: Nobuhiko Inui, Daisuke Mukohata, Mitsuru Naruta, Kensuke Tsumura, Kazuhiro Sawa, Katsunori Takahashi, Koji Taniguchi
  • Publication number: 20130126795
    Abstract: Provided is a polyolefin-based resin composition capable of obtaining a molded product having a high modulus of elongation and a low coefficient of linear expansion. The polyolefin-based resin composition includes a polyolefin-based resin, flaked graphite, and either one or both of a compound with a six-membered ring structure and a compound with a five-membered ring structure. The flaked graphite is uniformly dispersed in the polyolefin-based resin. Thus, a molded product formed using the polyolefin-based resin composition has excellent mechanical strength such as a high modulus of elongation, a low coefficient of linear expansion, and high dimensional stability, and can be used for various applications such as a material that is suitable for use as the exterior panels of automobiles or a sheet metal replacement material.
    Type: Application
    Filed: June 16, 2011
    Publication date: May 23, 2013
    Inventors: Katsunori Takahashi, Daisuke Mukohata, Kouji Taniguchi, Mitsuru Naruta, Shouji Nozato, Naoyuki Nagatani, Kensuke Tsumura, Kazuhiro Sawa
  • Publication number: 20120128951
    Abstract: Provided is a resin laminated plate which can achieve weight reduction and further increase in strength and is less likely to degrade in surface appearance. A resin laminated plate 1 including a layer made of a thermoplastic resin or thermosetting resin in a laminated structure includes: a first layer 2 made of a thermoplastic resin or thermosetting resin having a tensile modulus of elasticity of 0.8 to 2.0 GPa; and a second layer 3 disposed on the first layer 2, made of a different resin from the thermoplastic resin or thermosetting resin forming the first layer 2, and having a form selected from the group consisting of a film, a woven fabric, a non-woven fabric, and a mesh, wherein the ratio between the thickness of the first layer and the thickness of the second layer is within the range of 0.5 to 10 and the apparent bending modulus of elasticity of the resin laminated plate determined by the bending test defined in Japanese Industrial Standards (JIS) K7171 is 2.5 GPa to 8.5 GPa, both inclusive.
    Type: Application
    Filed: September 17, 2010
    Publication date: May 24, 2012
    Inventors: Katsunori Takahashi, Daisuke Mukohata, Mitsuru Naruta, Kensuke Tsumura, Kazuhiro Sawa, Koji Taniguchi, Naoyuki Nagatani