Patents by Inventor Kevin L. Lin

Kevin L. Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220262722
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Publication number: 20220216149
    Abstract: Disclosed herein are integrated circuit (IC) components with dummy structures, as well as related methods and devices. For example, in some embodiments, an IC component may include a dummy structure in a metallization stack. The dummy structure may include a dummy material having a higher Young's modulus than an interlayer dielectric of the metallization stack.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Applicant: Intel Corporation
    Inventors: Kevin L. Lin, Nicholas James Harold McKubre, Richard Farrington Vreeland, Sansaptak Dasgupta
  • Patent number: 11373950
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Robert L. Bristol, Kevin L. Lin, Florian Gstrein, James M. Blackwell, Marie Krysak, Manish Chandhok, Paul A. Nyhus, Charles H. Wallace, Curtis W. Ward, Swaminathan Sivakumar, Elliot N. Tan
  • Patent number: 11335777
    Abstract: Disclosed herein are integrated circuit (IC) components with substrate cavities, as well as related techniques and assemblies. In some embodiments, an IC component may include a substrate, a device layer on the substrate, a plurality of interconnect layers on the device layer, and a cavity in the substrate.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Paul B. Fischer, Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Ibrahim Ban
  • Patent number: 11328992
    Abstract: Disclosed herein are integrated circuit (IC) components with dummy structures, as well as related methods and devices. For example, in some embodiments, an IC component may include a dummy structure in a metallization stack. The dummy structure may include a dummy material having a higher Young's modulus than an interlayer dielectric of the metallization stack.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: May 10, 2022
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Nicholas James Harold McKubre, Richard Farrington Vreeland, Sansaptak Dasgupta
  • Publication number: 20220130719
    Abstract: Approaches based on differential hardmasks for modulation of electrobucket sensitivity for semiconductor structure fabrication, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for an integrated circuit includes forming a hardmask layer above an inter-layer dielectric (ILD) layer formed above a substrate. A plurality of dielectric spacers is formed on the hardmask layer. The hardmask layer is patterned to form a plurality of first hardmask portions. A plurality of second hardmask portions is formed alternating with the first hardmask portions. A plurality of electrobuckets is formed on the alternating first and second hardmask portions and in openings between the plurality of dielectric spacers. Select ones of the plurality of electrobuckets are exposed to a lithographic exposure and removed to define a set of via locations.
    Type: Application
    Filed: January 4, 2022
    Publication date: April 28, 2022
    Inventors: Kevin L. LIN, Robert L. BRISTOL, James M. BLACKWELL, Rami HOURANI, Marie KRYSAK
  • Publication number: 20220102268
    Abstract: Integrated circuit interconnect structures including a metallization line with a bottom barrier material, and a metallization via lacking a bottom barrier material. Barrier material at a bottom of the metallization line may, along with barrier material on a sidewall of the metallization line, mitigate the diffusion or migration of fill metal from the line. An absence of barrier material at a bottom of the via may reduce via resistance and/or facilitate the use of a highly resistive barrier material that may enhance the scalability of interconnect structures. A number of masking materials and patterning techniques may be integrated into a dual damascene interconnect process to provide for both a barrier material and a low resistance via unburden by the barrier material.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Urusa Alaan, Kevin L. Lin, Miriam Reshotko, Sarah Atanasov, Christopher Jezewski, Carl Naylor, Mauro Kobrinsky, Hui Jae Yoo
  • Patent number: 11251072
    Abstract: Approaches based on differential hardmasks for modulation of electrobucket sensitivity for semiconductor structure fabrication, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for an integrated circuit includes forming a hardmask layer above an inter-layer dielectric (ILD) layer formed above a substrate. A plurality of dielectric spacers is formed on the hardmask layer. The hardmask layer is patterned to form a plurality of first hardmask portions. A plurality of second hardmask portions is formed alternating with the first hardmask portions. A plurality of electrobuckets is formed on the alternating first and second hardmask portions and in openings between the plurality of dielectric spacers. Select ones of the plurality of electrobuckets are exposed to a lithographic exposure and removed to define a set of via locations.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Robert L. Bristol, James M. Blackwell, Rami Hourani, Marie Krysak
  • Publication number: 20210407895
    Abstract: An integrated circuit interconnect level including a lower metallization line vertically spaced from upper metallization lines. Lower metallization lines may be self-aligned to upper metallization lines enabling increased metallization line width without sacrificing line density for a given interconnect level. Combinations of upper and lower metallization lines within an interconnect metallization level may be designed to control intra-layer resistance/capacitance of integrated circuit interconnect. Dielectric material between two adjacent co-planar metallization lines may be recessed or deposited selectively to the metallization lines. Supplemental metallization may then be deposited and planarized. A top surface of the supplemental metallization may either be recessed to form lower metallization lines between upper metallization lines, or planarized with dielectric material to form upper metallization lines between lower metallization lines.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Kevin L. Lin, Sukru Yemenicioglu, Patrick Morrow, Richard Schenker, Mauro Kobrinsky
  • Publication number: 20210407907
    Abstract: Integrated circuit metallization lines having a planar top surface but different vertical heights, for example to control intra-layer resistance/capacitance of integrated circuit interconnect. A hardmask material layer may be inserted between two thicknesses of dielectric material that are over a via metallization. Following deposition of the hardmask material layer, trench openings may be patterned through the hardmask layer to define where line metallization will have a greater height. Following the deposition of a thickness of dielectric material over the hardmask material layer, a trench pattern may be etched through the uppermost thickness of dielectric material, exposing the hardmask material layer wherever the trench does not coincide with an opening in the hardmask material layer. The trench etch may be retarded where the hardmask material layer is exposed, resulting to trenches of differing depth. Trenches of differing depth may be filled with metallization and then planarized.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Hui Jae Yoo, Kevin L. Lin
  • Publication number: 20210397084
    Abstract: Lined photoresist structures to facilitate fabricating back end of line (BEOL) interconnects are described. In an embodiment, a hard mask has recesses formed therein, wherein liner structures are variously disposed each on a sidewall of a respective recess. Photobuckets comprising photoresist material are also variously disposed in the recesses. The liner structures variously serve as marginal buffers to mitigate possible effects of misalignment in the exposure of photoresist material to photons or an electron beam. In another embodiment, a recess has disposed therein a liner structure and a photobucket that are both formed by self-assembly of a photoresist-based block-copolymer.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: James M. BLACKWELL, Robert L. BRISTOL, Marie KRYSAK, Florian GSTREIN, Eungnak HAN, Kevin L. LIN, Rami HOURANI, Shane M. HARLSON
  • Patent number: 11189790
    Abstract: Spacer-based patterning for tight-pitch and low-variability random access memory (RAM) bit cells, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate having a top layer. An array of non-volatile random access memory (RAM) bit cells is disposed on the top layer of the substrate. The array of non-volatile RAM bit cells includes columns of non-volatile RAM bit cells along a first direction and rows of non-volatile RAM bit cells along a second direction orthogonal to the first direction. A plurality of recesses is in the top layer of the substrate, along the first direction between columns of the array of non-volatile RAM bit cells.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 30, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Sarah E. Atanasov, Kevin P. O'Brien, Robert L. Bristol
  • Patent number: 11137681
    Abstract: Lined photoresist structures to facilitate fabricating back end of line (BEOL) interconnects are described. In an embodiment, a hard mask has recesses formed therein, wherein liner structures are variously disposed each on a sidewall of a respective recess. Photobuckets comprising photoresist material are also variously disposed in the recesses. The liner structures variously serve as marginal buffers to mitigate possible effects of misalignment in the exposure of photoresist material to photons or an electron beam. In another embodiment, a recess has disposed therein a liner structure and a photobucket that are both formed by self-assembly of a photoresist-based block-copolymer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: October 5, 2021
    Assignee: Intel Corporation
    Inventors: James M. Blackwell, Robert L. Bristol, Marie Krysak, Florian Gstrein, Eungnak Han, Kevin L. Lin, Rami Hourani, Shane M. Harlson
  • Publication number: 20210225698
    Abstract: Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate. A plurality of alternating first and second conductive line types is disposed along a same direction of a back end of line (BEOL) metallization layer disposed in an inter-layer dielectric (ILD) layer disposed above the substrate. A dielectric layer is disposed on an uppermost surface of the first conductive line types but not along sidewalls of the first conductive line types, and is disposed along sidewalls of the second conductive line types but not on an uppermost surface of the second conductive line types.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 22, 2021
    Inventors: Kevin L. LIN, Richard E. SCHENKER, Jeffery D. BIELEFELD, Rami HOURANI, Manish CHANDHOK
  • Patent number: 11024538
    Abstract: In an example, there is disclosed an integrated circuit, having: a first layer having a dielectric, a first conductive interconnect and a second conductive interconnect; a second layer having a third conductive interconnect; a conductive via between the first layer and the second layer to electrically couple the second conductive interconnect to the third conductive interconnect; and an etch-resistant plug disposed vertically between the first layer and second layer and disposed to prevent the via from electrically shorting to the first conductive interconnect.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Tayseer Mahdi, Jessica M. Torres, Jeffery D. Bielefeld, Marie Krysak, James M. Blackwell
  • Patent number: 11011463
    Abstract: Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate. A plurality of alternating first and second conductive line types is disposed along a same direction of a back end of line (BEOL) metallization layer disposed in an inter-layer dielectric (ILD) layer disposed above the substrate. A dielectric layer is disposed on an uppermost surface of the first conductive line types but not along sidewalls of the first conductive line types, and is disposed along sidewalls of the second conductive line types but not on an uppermost surface of the second conductive line types.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Richard E. Schenker, Jeffery D. Bielefeld, Rami Hourani, Manish Chandhok
  • Patent number: 11011481
    Abstract: In an example, there is disclosed a configurable impedance element, having: a first impedance network including a plurality of series impedance elements and providing an initial impedance; a trim impedance network parallel to the first impedance network, including a plurality of corresponding impedance elements to the impedance elements of the first impedance network; and antifuses between the impedance elements of the first impedance network and their corresponding impedance elements of the trim network. There is also disclosed an integrated circuit including the impedance element, and a method of manufacturing and configuring the impedance element.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, James M. Blackwell
  • Publication number: 20210082800
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: December 2, 2020
    Publication date: March 18, 2021
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Patent number: 10892223
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Robert L. Bristol, Kevin L. Lin, Florian Gstrein, James M. Blackwell, Marie Krysak, Manish Chandhok, Paul A. Nyhus, Charles H. Wallace, Curtis W. Ward, Swaminathan Sivakumar, Elliot N. Tan
  • Patent number: 10892184
    Abstract: Approaches based on photobucket floor colors with selective grafting for semiconductor structure fabrication, and the resulting structures, are described. For example, a grating structure is formed above an ILD layer formed above a substrate, the grating structure including a plurality of dielectric spacers separated by alternating first trenches and second trenches, grafting a resist-inhibitor layer in the first trenches but not in the second trenches, forming photoresist in the first trenches and in the second trenches, exposing and removing the photoresist in select ones of the second trenches to a lithographic exposure to define a set of via locations, etching the set of via locations into the ILD layer, and forming a plurality of metal lines in the ILD layer, where select ones of the plurality of metal lines includes an underlying conductive via corresponding to the set of via locations.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Kevin L. Lin, James M. Blackwell, Rami Hourani, Eungnak Han