Patents by Inventor Kevin R. Seifert

Kevin R. Seifert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11083491
    Abstract: Extravascular implant tools that utilize a bore-in mechanism to safely access extravascular locations and implant techniques utilizing these tools are described. The bore-in mechanism may include a handle and a helix extending from the handle. The bore-in mechanism is used, for example, in conjunction with a tunneling tool to traverse the diaphragmatic attachments to access a substernal location. The tunneling tool may be an open channel tunneling tool or a conventional tunneling tool (e.g., metal rod).
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 10, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Ronald A. Drake, Kevin R. Seifert, Lester O. Stener, Amy E. Thompson-Nauman
  • Patent number: 11000683
    Abstract: An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 11, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Nathan L. Olson
  • Publication number: 20210085960
    Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An implant tool for implanting a medical lead may include a handle and a shaft adjacent the handle. The shaft has a proximal end, a distal end, and an open channel that extends from near the proximal end to the distal end, the open channel having a width that is greater than or equal to an outer diameter of the implantable medical lead.
    Type: Application
    Filed: October 2, 2020
    Publication date: March 25, 2021
    Inventors: Kevin R. Seifert, Nathan L. Olson, Rebecca L. Poindexter
  • Patent number: 10898707
    Abstract: Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: January 26, 2021
    Assignee: Medtronic, Inc.
    Inventors: Michael D. Eggen, Kevin R. Seifert, Vladimir Grubac
  • Patent number: 10874850
    Abstract: A device for delivering an implantable medical device (IMD) includes an elongated member and a deployment bay configured to house the IMD, the deployment bay defining a distal opening for deploying the IMD out of the deployment bay. The device includes a first electrode located inside the deployment bay during intravascular navigation, a second electrode, and impedance detection circuitry configured to deliver an electrical signal to a path between the first electrode and the second electrode through at least one of a fluid or tissue of the patient. The device also includes processing circuitry configured to determine an impedance of the path based on the signal and control a user interface to indicate when an impedance of the path indicates that at least one of the IMD or the distal opening is in a fixation configuration relative to the target site of the patient.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: December 29, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Ronald A. Drake, Kathryn Hilpisch, Kevin R. Seifert, William Schindeldecker, Stephanie Koppes, Brian P. Colin, Alexander R. Mattson
  • Publication number: 20200368519
    Abstract: A lead body having a defibrillation electrode positioned along a distal portion of the lead body is described. The defibrillation electrode includes a plurality of electrode segments spaced a distance apart from each other. At least one of the plurality of defibrillation electrode segments includes at least one coated portion and at least one uncoated portion. The at least one coated portion is coated with an electrically insulating material configured to prevent transmission of a low voltage signal (e.g., a pacing pulse) while allowing transmission of a high voltage signal (e.g., a cardioversion defibrillation shock). The at least one uncoated portion is configured to transmit both low voltage and high voltage signals. The lead may also include one or more discrete electrodes proximal, distal or between the defibrillation electrode segments.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Mark T. Marshall, Amy E. Thompson-Nauman, Melissa G.T. Christie, Gonzalo Martinez, Kevin R. Seifert
  • Patent number: 10792490
    Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An implant tool for implanting a medical lead may include a handle and a shaft adjacent the handle. The shaft has a proximal end, a distal end, and an open channel that extends from near the proximal end to the distal end, the open channel having a width that is greater than or equal to an outer diameter of the implantable medical lead.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 6, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Nathan L. Olson, Rebecca L. Poindexter
  • Publication number: 20200297993
    Abstract: This disclosure describes an implantable medical electrical lead and an ICD system utilizing the lead. The lead includes a lead body defining a proximal end and a distal portion, wherein at least a part of the distal portion of the lead body defines an undulating configuration. The lead includes a defibrillation electrode that includes a plurality of defibrillation electrode segments disposed along the undulating configuration spaced apart from one another by a distance. The lead also includes at least one electrode disposed between adjacent sections of the plurality of defibrillation sections. The at least one electrode is configured to deliver a pacing pulse to the heart and/or sense cardiac electrical activity of the heart.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 24, 2020
    Inventors: Mark T. Marshall, Gonzalo Martinez, Vladimir P. Nikolski, Nathan L. Olson, Kevin R. Seifert, Teresa A. Whitman
  • Patent number: 10765858
    Abstract: A lead body having a defibrillation electrode positioned along a distal portion of the lead body is described. The defibrillation electrode includes a plurality of electrode segments spaced a distance apart from each other. At least one of the plurality of defibrillation electrode segments includes at least one coated portion and at least one uncoated portion. The at least one coated portion is coated with an electrically insulating material configured to prevent transmission of a low voltage signal (e.g., a pacing pulse) while allowing transmission of a high voltage signal (e.g., a cardioversion defibrillation shock). The at least one uncoated portion is configured to transmit both low voltage and high voltage signals. The lead may also include one or more discrete electrodes proximal, distal or between the defibrillation electrode segments.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Amy E. Thompson-Nauman, Melissa G. T. Christie, Gonzalo Martinez, Kevin R. Seifert
  • Publication number: 20200222689
    Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Kevin R. SEIFERT, Maggie J. PISTELLA, Thomas D. BROSTROM, Keith D. ANDERSON, Gareth MORGAN
  • Patent number: 10675478
    Abstract: This disclosure describes an implantable medical electrical lead and an ICD system utilizing the lead. The lead includes a lead body defining a proximal end and a distal portion, wherein at least a part of the distal portion of the lead body defines an undulating configuration. The lead includes a defibrillation electrode that includes a plurality of defibrillation electrode segments disposed along the undulating configuration spaced apart from one another by a distance. The lead also includes at least one electrode disposed between adjacent sections of the plurality of defibrillation sections. The at least one electrode is configured to deliver a pacing pulse to the heart and/or sense cardiac electrical activity of the heart.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: June 9, 2020
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Gonzalo Martinez, Vladimir P. Nikolski, Nathan L. Olson, Kevin R. Seifert, Teresa A. Whitman
  • Publication number: 20200101279
    Abstract: A device for delivering an implantable medical device (IMD) includes an elongated member and a deployment bay configured to house the IMD, the deployment bay defining a distal opening for deploying the IMD out of the deployment bay. The device includes a first electrode located inside the deployment bay during intravascular navigation, a second electrode, and impedance detection circuitry configured to deliver an electrical signal to a path between the first electrode and the second electrode through at least one of a fluid or tissue of the patient. The device also includes processing circuitry configured to determine an impedance of the path based on the signal and control a user interface to indicate when an impedance of the path indicates that at least one of the IMD or the distal opening is in a fixation configuration relative to the target site of the patient.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Ronald A. Drake, Kathryn Hilpisch, Kevin R. Seifert, William Schindeldecker, Stephanie Koppes, Brian P. Colin, Alexander R. Mattson
  • Patent number: 10603483
    Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: March 31, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Maggie J. Pistella, Thomas D. Brostrom, Keith D. Anderson, Gareth Morgan
  • Patent number: 10531893
    Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An example implant tool for implanting a medical lead includes a rod having a handle and a shaft, and a sheath configured to be placed on the shaft of the rod. The sheath includes a body having proximal end and a distal, a channel formed by the body, the channel extending from the proximal end to the distal end of the body, and an opening that extends along the body of the sheath from the proximal end to the distal end, wherein the channel is accessible via the opening.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: January 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Roger A. Christopherson, Nathan L. Olson, Rebecca L. Poindexter
  • Patent number: 10535446
    Abstract: A joint between an insulative sidewall of a medical electrical lead subassembly and an underlying fluoropolymer layer includes an interfacial layer. A first section of the interfacial layer is bonded to the fluoropolymer layer and is formed by a thermoplastic fluoropolymer; a second section of the interfacial layer extends adjacent the first section and is bonded to the insulative sidewall. The insulative sidewall, of the subassembly, and the second section, of the interfacial layer, are each formed from a material that is not a fluoropolymer. A recess is formed in the first section of the interfacial layer and the second section of the interfacial layer extends within the recess.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: January 14, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Kathleen M. Grenz
  • Patent number: 10463853
    Abstract: An implantable medical device includes ventricular and atrial portions, and a flexible leadlet that extends therebetween. An open channel of the atrial portion, formed along a core thereof, is sized to receive the leadlet therein, when the leadlet is folded over on itself. An interventional medical system includes the device and a delivery tool; a tubular sidewall of the tool defines a lumen and has a tether extending therein. A slot formed in the sidewall extends proximally from an open end thereof, coincident with a distal opening of the lumen. When the atrial portion is contained within the lumen, a segment of the leadlet extends alongside the atrial portion; another segment of the leadlet, being folded over on itself, proximal to the atrial portion, has the tether engaged therewith. The slot may allow passage of the leadlet therethrough, when the atrial portion is positioned for deployment through the distal opening.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 5, 2019
    Assignee: Medtronic, Inc.
    Inventors: Ronald A Drake, Xin Chen, Michael D Eggen, Matthew D Bonner, Vladimir Grubac, Brian P Colin, Kenneth C Gardeski, Kevin R Seifert
  • Patent number: 10398471
    Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An example implant tool for implanting a medical lead includes a rod and a sheath configured to be placed on the rod. The rod includes a handle, a shaft having a proximal end adjacent to the handle and a distal end, and an attachment feature toward the distal end of the shaft, the attachment feature configured to couple to the medical lead. The sheath is configured to be placed in multiple positions along the rod including a first position in which the sheath does not interact with the attachment feature and second position in which the sheath does interact with the attachment feature.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: September 3, 2019
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Roger A. Christopherson, Nathan L. Olson, Rebecca L. Poindexter
  • Publication number: 20190255314
    Abstract: An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Kevin R. Seifert, Nathan L. Olson
  • Patent number: 10349978
    Abstract: This disclosure provides various embodiments of implant tools and implant techniques utilizing those tools. In one embodiment, an implant tool comprises a handle and a shaft. The shaft includes a proximal end adjacent the handle, a distal end, an open channel that extends from near the proximal end to the distal end, and at least one lumen that extends from a proximal end of the shaft to a location near the distal end of the shaft. The implant tool may also include a coupler configured to connect to a fluid delivery device. In one example, the fluid delivery device may be a syringe. In some instances, the handle of the implant tool may include a compartment or a recess configured to receive the fluid delivery device.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 16, 2019
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Nathan L. Olson, Becky L. Dolan
  • Patent number: 10279165
    Abstract: An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 7, 2019
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Nathan L. Olson