Patents by Inventor Kevin Rauh
Kevin Rauh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12085130Abstract: A transmission actuator for a vehicle includes a housing, a first rocker for engaging a toothed wheel, a second rocker for rotating the first rocker to engage the toothed wheel, an engagement rod for rotating the second rocker, a solenoid arranged to displace the engagement rod, and a solenoid control circuit. The solenoid includes an iron core, a wire coil wrapped around the iron core, and a ferromagnetic plunger. The plunger is arranged to linearly displace in a first direction when a first directional current is applied to the wire coil, and linearly displace in a second direction when a second directional current is applied to the wire coil. The solenoid control circuit is arranged supply the first directional current when energized by a power source, and supply a decaying alternating current that includes the first directional current and the second directional current when the solenoid control circuit is de-energized.Type: GrantFiled: October 13, 2022Date of Patent: September 10, 2024Assignee: Schaeffler Technologies AG &Co. KGInventors: Kevin Rauh, Nicholas Hrusch
-
Publication number: 20230034641Abstract: A transmission actuator for a vehicle includes a housing, a first rocker for engaging a toothed wheel, a second rocker for rotating the first rocker to engage the toothed wheel, an engagement rod for rotating the second rocker, a solenoid arranged to displace the engagement rod, and a solenoid control circuit. The solenoid includes an iron core, a wire coil wrapped around the iron core, and a ferromagnetic plunger. The plunger is arranged to linearly displace in a first direction when a first directional current is applied to the wire coil, and linearly displace in a second direction when a second directional current is applied to the wire coil. The solenoid control circuit is arranged supply the first directional current when energized by a power source, and supply a decaying alternating current that includes the first directional current and the second directional current when the solenoid control circuit is de-energized.Type: ApplicationFiled: October 13, 2022Publication date: February 2, 2023Applicant: Schaeffler Technologies AG & Co. KGInventors: Kevin Rauh, Nicholas Hrusch
-
Patent number: 11519465Abstract: A pump includes a stator and a rotor axially between a fluid inlet section and a fluid outlet section. The stator includes a plurality of radially inwardly extending legs; and a plurality of electrical windings disposed about the radially inwardly extending legs. The attenuating circuit includes a capacitor electrically wired in parallel with each winding and at least one switch electrically connected to the capacitor. During energization of the electrical winding, the switch electrically connects the capacitor to an electrical ground and the electrical power source creates a voltage in the capacitor. Following a de-energization of the plurality of electrical windings, the switch isolates the capacitor from the electrical ground and the capacitor discharges the voltage through the electrical winding, creating a decaying oscillating current that attenuates residual magnetization in the winding.Type: GrantFiled: June 10, 2020Date of Patent: December 6, 2022Assignee: Schaeffler Technologies AG & Co. KGInventors: Kevin Rauh, Nicholas Hrusch
-
Patent number: 10921157Abstract: In one embodiment, a position sensor assembly is disclosed. The position sensor assembly includes a first bearing ring defining a first bearing raceway, and a second bearing ring defining a second bearing raceway. A ferromagnetic component is arranged on the first bearing ring. The ferromagnetic component defines a surface that has a non-uniform circumferential profile that varies for at least 90 degrees in a circumferential direction. An inductor assembly is arranged on the second bearing ring, and the inductor assembly includes at least two inductors that are circumferentially spaced from each other by at least 90 degrees.Type: GrantFiled: February 12, 2019Date of Patent: February 16, 2021Assignee: SCHAEFFLER TECHNOLOGIES AG & CO. KGInventor: Kevin Rauh
-
Publication number: 20200362923Abstract: A pump includes a stator and a rotor axially between a fluid inlet section and a fluid outlet section. The stator includes a plurality of radially inwardly extending legs; and a plurality of electrical windings disposed about the radially inwardly extending legs. The attenuating circuit includes a capacitor electrically wired in parallel with each winding and at least one switch electrically connected to the capacitor. During energization of the electrical winding, the switch electrically connects the capacitor to an electrical ground and the electrical power source creates a voltage in the capacitor. Following a de-energization of the plurality of electrical windings, the switch isolates the capacitor from the electrical ground and the capacitor discharges the voltage through the electrical winding, creating a decaying oscillating current that attenuates residual magnetization in the winding.Type: ApplicationFiled: June 10, 2020Publication date: November 19, 2020Applicant: Schaeffler Technologies AG & Co. KGInventors: Kevin Rauh, Nicholas Hrusch
-
Publication number: 20200256705Abstract: In one embodiment, a position sensor assembly is disclosed. The position sensor assembly includes a first bearing ring defining a first bearing raceway, and a second bearing ring defining a second bearing raceway. A ferromagnetic component is arranged on the first bearing ring. The ferromagnetic component defines a surface that has a non-uniform circumferential profile that varies for at least 90 degrees in a circumferential direction. An inductor assembly is arranged on the second bearing ring, and the inductor assembly includes at least two inductors that are circumferentially spaced from each other by at least 90 degrees.Type: ApplicationFiled: February 12, 2019Publication date: August 13, 2020Applicant: Schaeffler Technologies AG & Co. KGInventor: Kevin Rauh
-
Patent number: 10718387Abstract: A clutch, including: inner and outer races; a wedge plate; an electromagnetic actuator including a coil and an attenuating circuit. The coil is arranged to be energized by a power source to switch the wedge clutch between: a locked mode in which the inner and races are locked in a circumferential direction and a free-wheel mode in which the inner race is rotatable with respect to the outer race in the circumferential direction. The attenuating circuit includes a capacitor parallel with the coil and a switch wired to the capacitor. During the free-wheel mode: the switch is arranged to connect the capacitor to an electrical ground; and the electrical power source is arranged to energize the coil and charge the capacitor with a voltage. Following initiation of the locked mode: the switch isolates the capacitor from the electrical ground; and the capacitor discharges the voltage through the coil.Type: GrantFiled: September 26, 2018Date of Patent: July 21, 2020Assignee: Schaeffler Technologies AG & Co. KGInventors: Kevin Rauh, Nicholas Hrusch
-
Patent number: 10626930Abstract: A wedge clutch, including: outer and inner races; a wedge plate radially between the inner and outer races; and an electromagnetic actuator. The electromagnetic actuator includes: a coil; a first coil core piece including a first end disposed within the coil and a second end connected to the wedge plate; and a second coil core piece including a first end disposed within the first coil and a second end connected to the wedge plate. In a locked mode of the clutch, the inner race and outer races and the wedge plate are non-rotatably connected for rotation of the inner race in a circumferential direction. In a free-wheel mode of the clutch, the inner race is rotatable, with respect to the outer race, in the circumferential direction. To transition from the locked mode to the free-wheel mode, the electromagnetic actuator is arranged to be energized to radially contract the wedge plate.Type: GrantFiled: September 5, 2018Date of Patent: April 21, 2020Assignee: Schaeffler Technologies AG & Co. KGInventors: Nicholas Hrusch, Md Wasi Uddin, Kevin Rauh
-
Publication number: 20200096055Abstract: A clutch, including: inner and outer races; a wedge plate; an electromagnetic actuator including a coil and an attenuating circuit. The coil is arranged to be energized by a power source to switch the wedge clutch between: a locked mode in which the inner and races are locked in a circumferential direction and a free-wheel mode in which the inner race is rotatable with respect to the outer race in the circumferential direction. The attenuating circuit includes a capacitor parallel with the coil and a switch wired to the capacitor. During the free-wheel mode: the switch is arranged to connect the capacitor to an electrical ground; and the electrical power source is arranged to energize the coil and charge the capacitor with a voltage. Following initiation of the locked mode: the switch isolates the capacitor from the electrical ground; and the capacitor discharges the voltage through the coil.Type: ApplicationFiled: September 26, 2018Publication date: March 26, 2020Inventors: Kevin Rauh, Nicholas Hrusch
-
Publication number: 20200072300Abstract: A wedge clutch, including: outer and inner races; a wedge plate radially between the inner and outer races; and an electromagnetic actuator. The electromagnetic actuator includes: a coil; a first coil core piece including a first end disposed within the coil and a second end connected to the wedge plate; and a second coil core piece including a first end disposed within the first coil and a second end connected to the wedge plate. In a locked mode of the clutch, the inner race and outer races and the wedge plate are non-rotatably connected for rotation of the inner race in a circumferential direction. In a free-wheel mode of the clutch, the inner race is rotatable, with respect to the outer race, in the circumferential direction. To transition from the locked mode to the free-wheel mode, the electromagnetic actuator is arranged to be energized to radially contract the wedge plate.Type: ApplicationFiled: September 5, 2018Publication date: March 5, 2020Applicant: Schaeffler Technologies AG & Co. KGInventors: Nicholas Hrusch, Md Wasi Uddin, Kevin Rauh