Patents by Inventor Khondker Ahmed

Khondker Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11675379
    Abstract: A Computational Digital Low Dropout (CDLDO) regulator is described that computes a required solution for regulating an output supply as opposed to traditional feedback controllers. The CDLDO regulator is Moore's Law friendly in that it can scale with technology nodes. For example, CDLDO regulator of some embodiments uses a digital approach to voltage regulation, which is orders of magnitude faster than traditional digital LDOs and enables regulation at GHz speeds, making fast dynamic DVFS a reality. The CDLDO also autonomously tunes out the effects of process-voltage-temperature (PVT) and other non-idealities making the settling time totally variation tolerant.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: June 13, 2023
    Assignee: Intel Corporation
    Inventors: Khondker Ahmed, Harish Krishnamurthy, Krishnan Ravichandran
  • Publication number: 20230092022
    Abstract: An apparatus, system, and method for voltage regulator (VR) control are provided. An apparatus can include first, second, and third comparators configured to determine whether a load voltage (VLOAD) drops below a lower non-linear control (NLC) threshold, drops below a lower linear control (LC) threshold, and exceeds an upper LC threshold, respectively. The apparatus can include power gates (PGs) configured to adjust an output voltage (VOUT) based on a provided power gate (PG) code. The apparatus can include voltage regulator (VR) controller circuitry comprising synchronous LC circuitry and asynchronous NLC circuitry, the LC circuitry configured to increment or decrement the PG code responsive to the VLOAD dropping below the LC threshold and exceeding the upper LC threshold, respectively, and the NLC circuitry configured to increase the PG code based on a number of consecutive NLC droop events and responsive to the VLOAD dropping below the lower NLC threshold.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Fabrice Paillet, Anand Ramasundar, Khondker Ahmed, Harish K. Krishnamurthy, Cary Renzema, Christopher Mandic, James Keith Hodgson
  • Patent number: 11429172
    Abstract: A power supply architecture combines the benefits of a traditional single stage power delivery, when there are no additional power losses in the integrated VR with low VID and low CPU losses of FIVR (fully integrated voltage regulator) and D-LVR (digital linear voltage regulator). The D-LVR is not in series with the main power flow, but in parallel. By placing the digital-LVR in parallel to a primary VR (e.g., motherboard VR), the CPU VID is lowered and the processor core power consumption is lowered. The power supply architecture reduces the guard band for input power supply level, thereby reducing the overall power consumption because the motherboard VR specifications can be relaxed, saving cost and power. The power supply architecture drastically increases the CPU performance at a small extra cost for the silicon and low complexity of tuning.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 30, 2022
    Assignee: Intel Corporation
    Inventors: Alexander Uan-Zo-Li, Eugene Gorbatov, Harish Krishnamurthy, Alexander Lyakhov, Patrick Leung, Stephen Gunther, Arik Gihon, Khondker Ahmed, Philip Lehwalder, Sameer Shekhar, Vishram Pandit, Nimrod Angel, Michael Zelikson
  • Patent number: 11411491
    Abstract: Voltage dividing circuitry is provided for use in a voltage converter for converting at least one input Direct Current, DC voltage to a plurality of output DC voltages. The voltage dividing circuitry including a voltage input port to receive an input DC voltage and an inductor having an input-side switch node and an output-side switch node. The output side switch node is connectable to one of a plurality of voltage output ports to supply a converted value of the input DC voltage as an output DC voltage. The flying capacitor interface has a plurality of switching elements and at least one flying capacitor, the flying capacitor interface to divide the input DC voltage to provide a predetermined fixed ratio of the input DC voltage at the input-side switch node of the inductor. A voltage converter and a power management integrated circuit having the voltage dividing circuitry are also provided.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: Vivek De, Krishnan Ravichandran, Harish Krishnamurthy, Khondker Ahmed, Sriram Vangal, Vaibhav Vaidya, Turbo Majumder, Christopher Schaef, Suhwan Kim, Xiaosen Liu, Nachiket Desai
  • Publication number: 20210271277
    Abstract: A Computational Digital Low Dropout (CDLDO) regulator is described that computes a required solution for regulating an output supply as opposed to traditional feedback controllers. The CDLDO regulator is Moore's Law friendly in that it can scale with technology nodes. For example, CDLDO regulator of some embodiments uses a digital approach to voltage regulation, which is orders of magnitude faster than traditional digital LDOs and enables regulation at GHz speeds, making fast dynamic DVFS a reality. The CDLDO also autonomously tunes out the effects of process-voltage-temperature (PVT) and other non-idealities making the settling time totally variation tolerant.
    Type: Application
    Filed: September 6, 2019
    Publication date: September 2, 2021
    Applicant: Intel Corporation
    Inventors: Khondker Ahmed, Harish Krishnamurthy, Krishnan Ravichandran
  • Publication number: 20210208656
    Abstract: A power supply architecture combines the benefits of a traditional single stage power delivery, when there are no additional power losses in the integrated VR with low VID and low CPU losses of FIVR (fully integrated voltage regulator) and D-LVR (digital linear voltage regulator). The D-LVR is not in series with the main power flow, but in parallel. By placing the digital-LVR in parallel to a primary VR (e.g., motherboard VR), the CPU VID is lowered and the processor core power consumption is lowered. The power supply architecture reduces the guard band for input power supply level, thereby reducing the overall power consumption because the motherboard VR specifications can be relaxed, saving cost and power. The power supply architecture drastically increases the CPU performance at a small extra cost for the silicon and low complexity of tuning.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Applicant: Intel Corporation
    Inventors: Alexander Uan-Zo-Li, Eugene Gorbatov, Harish Krishnamurthy, Alexander Lyakhov, Patrick Leung, Stephen Gunther, Arik Gihon, Khondker Ahmed, Philip Lehwalder, Sameer Shekhar, Vishram Pandit, Nimrod Angel, Michael Zelikson
  • Patent number: 10897364
    Abstract: Spin Hall Effect (SHE) magneto junction memory cells (e.g., magnetic tunneling junction (MTJ) or spin valve based memory cells) are used to implement high entropy physically unclonable function (PUF) arrays utilizing stochastics interactions of both parameter variations of the SHE-MTJ structures as well as random thermal noises. An apparatus is provided which comprises: an array of PUF devices, wherein an individual device of the array comprises a magnetic junction and an interconnect, wherein the interconnect comprises a spin orbit coupling material; a circuitry to sense values stored in the array, and to provide an output; and a comparator to compare the output with a code.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: January 19, 2021
    Assignee: Intel Corporation
    Inventors: Vivek De, Krishnan Ravichandran, Harish Krishnamurthy, Khondker Ahmed, Sriram Vangal, Vaibhav Vaidya, Turbo Majumder, Christopher Schaef, Suhwan Kim, Xiaosen Liu, Nachiket Desai
  • Publication number: 20200350817
    Abstract: Voltage dividing circuitry is provided for use in a voltage converter for converting at least one input Direct Current, DC voltage to a plurality of output DC voltages. The voltage dividing circuitry including a voltage input port to receive an input DC voltage and an inductor having an input-side switch node and an output-side switch node. The output side switch node is connectable to one of a plurality of voltage output ports to supply a converted value of the input DC voltage as an output DC voltage. The flying capacitor interface has a plurality of switching elements and at least one flying capacitor, to divide the input DC voltage to provide a predetermined fixed ratio of the input DC voltage at the input-side switch node of the inductor. A voltage converter and a power management integrated circuit having the voltage dividing circuitry are also provided.
    Type: Application
    Filed: September 29, 2017
    Publication date: November 5, 2020
    Inventors: Vivek DE, Krishnan RAVICHANDRAN, Harish KRISHNAMURTHY, Khondker AHMED, Sriram VANGAL, Vaibhav VAIDYA, Turbo MAJUMDER, Christopher SCHAEF, Suhwan KIM, Xiaosen LIU, Nachiket DESAI
  • Patent number: 10530254
    Abstract: Embodiments described herein concern operating a peak-delivered-power (PDP) controller. Operating a PDP includes calculating the new power output value from the output voltage value and the output current value, determining whether the new power output value is greater than the previous power output value to determine whether the voltage regulator is outputting a maximum power output, based on a determination that the new power output value is greater than the previous power output value, providing an instruction to a duty generator to increase a duty cycle of the voltage regulator, based on a determination that the new power output value is not greater than the previous power output value, providing an instruction to the duty generator to decrease the duty cycle of the voltage regulator, and replacing the previous power output value with the new power output value.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: January 7, 2020
    Assignee: INTEL CORPORATION
    Inventors: Khondker Ahmed, Vivek De, Nachiket Desai, Suhwan Kim, Harish Krishnamurthy, Xiaosen Liu, Turbo Majumder, Krishnan Ravichandran, Christopher Schaef, Vaibhav Vaidya, Sriram Vangal
  • Publication number: 20190190725
    Abstract: An apparatus is provided which comprises: an array of physically unclonable function (PUF) devices, wherein an individual device of the array comprises a magnetic junction and an interconnect, wherein the interconnect comprises a spin orbit coupling material; a circuitry to sense values stored in the array, and to provide an output; and a comparator to compare the output with a code.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Applicant: Intel Corporation
    Inventors: Vivek De, Krishnan Ravichandran, Harish Krishnamurthy, Khondker Ahmed, Sriram Vangal, Vaibhav Vaidya, Turbo Majumder, Christopher Schaef, Suhwan Kim, Xiaosen Liu, Nachiket Desai
  • Patent number: 10298117
    Abstract: Embodiments described herein describe operating a master-slave controller. Operating the master-slave controller comprises, based on a determination that the first output voltage value is greater than the second output voltage value, calculating a first duty cycle value and an input voltage value and the second voltage regulator, calculating a second duty cycle value based on the first duty cycle value, and based on a determination that the second output voltage value is greater than or equal to the first output voltage value, calculating the second duty cycle value based on the second output voltage value and the input voltage value and calculating the first duty cycle value based on the second duty cycle value and configuring the first voltage regulator with the first duty cycle value and the second voltage regulator with the second duty cycle value.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 21, 2019
    Assignee: INTEL CORPORATION
    Inventors: Harish Krishnamurthy, Khondker Ahmed, Vivek De, Nachiket Desai, Suhwan Kim, Xiaosen Liu, Turbo Majumder, Krishnan Ravichandran, Christopher Schaef, Vaibhav Vaidya, Sriram Vangal
  • Publication number: 20190006939
    Abstract: Embodiments described herein describe operating a master-slave controller. Operating the master-slave controller comprises, based on a determination that the first output voltage value is greater than the second output voltage value, calculating a first duty cycle value and an input voltage value and the second voltage regulator, calculating a second duty cycle value based on the first duty cycle value, and based on a determination that the second output voltage value is greater than or equal to the first output voltage value, calculating the second duty cycle value based on the second output voltage value and the input voltage value and calculating the first duty cycle value based on the second duty cycle value and configuring the first voltage regulator with the first duty cycle value and the second voltage regulator with the second duty cycle value.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Applicant: INTEL CORPORATION
    Inventors: Harish Krishnamurthy, Khondker Ahmed, Vivek De, Nachiket Desai, Suhwan Kim, Xiaosen Liu, Turbo Majumder, Krishnan Ravichandran, Christopher Schaef, Vaibhav Vaidya, Sriram Vangal
  • Publication number: 20180375433
    Abstract: Embodiments described herein concern operating a peak-delivered-power (PDP) controller. Operating a PDP includes calculating the new power output value from the output voltage value and the output current value, determining whether the new power output value is greater than the previous power output value to determine whether the voltage regulator is outputting a maximum power output, based on a determination that the new power output value is greater than the previous power output value, providing an instruction to a duty generator to increase a duty cycle of the voltage regulator, based on a determination that the new power output value is not greater than the previous power output value, providing an instruction to the duty generator to decrease the duty cycle of the voltage regulator, and replacing the previous power output value with the new power output value.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Applicant: INTEL CORPORATION
    Inventors: Khondker Ahmed, Vivek De, Nachiket Desai, Suhwan Kim, Harish Krishnamurthy, Xiaosen Liu, Turbo Majumder, Krishnan Ravichandran, Christopher Schaef, Vaibhav Vaidya, Sriram Vangal