Patents by Inventor Kiyoshi Kinoshita

Kiyoshi Kinoshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210288323
    Abstract: An object is to provide a non-aqueous electrolyte secondary battery negative electrode material which can improve a battery life as compared with a conventional one, a non-aqueous electrolyte secondary battery negative electrode including such a negative electrode material and a non-aqueous electrolyte secondary battery including such a negative electrode. A non-aqueous electrolyte secondary battery negative electrode material that includes a negative electrode active material formed of a silicon-based material a skeleton-forming agent including a silicate having a siloxane bond and an interface layer formed in an interface between the negative electrode active material and the skeleton-forming agent and formed of an inorganic material, a non-aqueous electrolyte secondary battery negative electrode including it and a non-aqueous electrolyte secondary battery are provided.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 16, 2021
    Inventors: Makiko TAKAHASHI, Tomohiro KINOSHITA, Kiyoshi TANAAMI, Shintaro AOYAGI, Takashi MUKAI, Yuta IKEUCHI, Taichi SAKAMOTO, Naoto YAMASHI TA
  • Publication number: 20210288325
    Abstract: An object is to provide a non-aqueous electrolyte secondary battery negative electrode which can improve a battery life as compared with a conventional one, a non-aqueous electrolyte secondary battery including it and a method for manufacturing it. A non-aqueous electrolyte secondary battery negative electrode includes: a collector; and a negative electrode layer formed on the collector, the negative electrode layer includes a negative electrode active material, a conductivity aid, a binder and a skeleton-forming agent including a silicate having a siloxane bond or a phosphate having a phosphate bond and the skeleton-forming agent is arranged on at least the interface of the negative electrode layer with the collector.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 16, 2021
    Inventors: Makiko Takahashi, Kiyoshi Tanaami, Tomohiro Kinoshita, Shintaro Aoyagi, Takashi Mukai, Yuta Ikeuchi, Taichi Sakamoto, Naoto Yamashita
  • Patent number: 10926436
    Abstract: Provided is an injection molding method for resin that contains reinforcing fiber, the method being capable of easily eliminating uneven distribution of added components. The injection molding method is provided with: a plasticizing step for supplying resin pellets P and added components to a cylinder equipped with a screw 10, which has a rotating axis as the center is capable of rotating normally and in reverse, and generating molten resin by rotating the screw 10 in the normal direction; and an injecting step for injecting the molten resin M comprising the added components into a cavity. In the plasticizing step, a reverse rotation operation for reversing the rotation of the screw 10 is performed or a screw-stopping operation of stopping the normal rotation of the screw 10 is performed with a prescribed timing and for a prescribed period.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: February 23, 2021
    Assignees: UBE MACHINERY CORPORATION, LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Munehiro Nobuta, Naoki Toda, Toshihiko Kariya, Takeshi Yamaguchi, Kiyoshi Kinoshita
  • Patent number: 10766178
    Abstract: Provided is a screw that is for use in an injection molding machine and that makes it possible to benefit from the kneading effect of a multi-start screw while minimizing the received friction resistance. The screw for an injection molding machine is provided with a first stage 20 on the upstream side and a second stage 30 on the downstream side. The screw for an injection molding machine is characterized in that: the first stage 20 is provided with a compression section 22 comprising a main scraper 25 and an auxiliary scraper 26 having a smaller outer diameter than the main scraper 25; and the second stage 30 is provided with a multi-start screw section 31, said multi-start screw section being provided on the upstream side and comprising a plurality of scrapers, and a fin kneading section 32 provided downstream from the multi-start screw section.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 8, 2020
    Assignees: U-MHI PLATECH CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Munehiro Nobuta, Naoki Toda, Toshihiko Kariya, Takeshi Yamaguchi, Kiyoshi Kinoshita
  • Patent number: 10486351
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of reinforcing fibers without giving an excessive shear force to the reinforcing fibers. A screw is provided inside a heating cylinder of an injection molding machine to which a resin pellet is fed on an upstream side in a conveyance direction of resin and to which reinforcing fibers are fed on a downstream side therein, and includes: a first stage at which the resin pellet which is fed is melted; and a second stage that continues to the first stage, and at which molten resin and the reinforcing fibers are mixed with each other. A second flight provided at the second stage includes: a large-diameter flight with a relatively large outer diameter; and a small-diameter flight with a relatively small outer diameter.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: November 26, 2019
    Assignees: U-MHI PLATECH CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toshihiko Kariya, Munehiro Nobuta, Naoki Toda, Kiyoshi Kinoshita, Takeshi Yamaguchi
  • Patent number: 10464246
    Abstract: An injection molding method includes: a plasticizing process of feeding a resin pellet and additive components to a heating cylinder including a screw that can rotate around a rotation axis and can advance and retreat along the rotation axis, and generating molten resin by rotating the screw in a normal direction; and an injection process of injecting to a cavity the molten resin containing the additive components. In the plasticizing process, retreat operation of forcibly retreating the screw is performed at a predetermined velocity by a predetermined stroke or a predetermined time.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: November 5, 2019
    Assignees: U-MHI PLATECH CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Munehiro Nobuta, Naoki Toda, Toshihiko Kariya, Takeshi Yamaguchi, Kiyoshi Kinoshita
  • Publication number: 20180022003
    Abstract: Provided is an injection molding method in which a constricting section is provided at a boundary between a first stage and a second stage of a screw. When a mixture of a molten resin and reinforcing fibers passes through the constricting section, compression force higher than compression force on an upstream side of the constricting section is applied to the mixture. A supply section on a downstream side of the constricting section has a shaft diameter smaller than an outer diameter of the constricting section. Therefore, the vicinity of the supply section becomes a reduced-pressure region with respect to the mixture having passed through the constricting section, and the mixture is accordingly expanded. As a result, spring-back occurs on the reinforcing fibers and a Barus effect occurs on the molten resin, thereby making it possible to produce a state that is advantageous to open the fiber bundle.
    Type: Application
    Filed: January 16, 2015
    Publication date: January 25, 2018
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Publication number: 20170355119
    Abstract: Provided is a screw that is for use in an injection molding machine and that makes it possible to benefit from the kneading effect of a multi-start screw while minimizing the received friction resistance. The screw for an injection molding machine is provided with a first stage 20 on the upstream side and a second stage 30 on the downstream side. The screw for an injection molding machine is characterized in that: the first stage 20 is provided with a compression section 22 comprising a main scraper 25 and an auxiliary scraper 26 having a smaller outer diameter than the main scraper 25; and the second stage 30 is provided with a multi-start screw section 31, said multi-start screw section being provided on the upstream side and comprising a plurality of scrapers, and a fin kneading section 32 provided downstream from the multi-start screw section.
    Type: Application
    Filed: January 15, 2015
    Publication date: December 14, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Publication number: 20170342515
    Abstract: The present invention does not require a demanganese agent such as a sulfide or a combustible gas in the removal of manganese of cast iron. The method for removing manganese of cast iron according to the present invention is implemented by performing the removal of a manganese component by allowing a furnace to be in an oxygen atmosphere, and by blowing air into a molten cast iron in the furnace, while a carbon component in the molten cast iron is being maintained at an approximately constant amount. Alternatively, the method for removing manganese of cast iron according to the present invention is implemented by performing the removal of the manganese component by allowing the furnace to be in an oxygen atmosphere and by stirring the molten cast iron in the furnace, while the carbon component in the molten cast iron is being maintained at an approximately constant amount.
    Type: Application
    Filed: November 30, 2015
    Publication date: November 30, 2017
    Applicants: KINOSHITA MANUFACTORY CO.,LTD., NANIWA ROKI CO.,LTD.
    Inventors: Kiyoshi KINOSHITA, Hirotoshi MURATA
  • Publication number: 20170312954
    Abstract: Provided is an injection molding method for resin that contains reinforcing fiber, the method being capable of easily eliminating uneven distribution of added components. The injection molding method is provided with: a plasticizing step for supplying resin pellets P and added components to a cylinder equipped with a screw 10, which has a rotating axis as the center is capable of rotating normally and in reverse, and generating molten resin by rotating the screw 10 in the normal direction; and an injecting step for injecting the molten resin M comprising the added components into a cavity. In the plasticizing step, a reverse rotation operation for reversing the rotation of the screw 10 is performed or a screw-stopping operation of stopping the normal rotation of the screw 10 is performed with a prescribed timing and for a prescribed period.
    Type: Application
    Filed: June 25, 2015
    Publication date: November 2, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Patent number: 9669573
    Abstract: The injection molding apparatus of the present invention includes: a heating cylinder; a screw that is provided rotatably in an inner portion of the heating cylinder; a resin feed hopper that feeds a resin pellet; and a fiber feed device that is provided ahead of the resin feed hopper and feeds reinforcing fibers into the heating cylinder. The screw includes a first stage that is located on a rear side, and in which the resin pellet is melted, and a second stage that is located on a front side, and in which the melted resin pellet and the reinforcing fibers are mixed, and a lead of a second flight provided in the second stage is larger than a lead of a first flight provided in the first stage.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: June 6, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta, Kiyoshi Kinoshita, Takeshi Yamaguchi, Kosuke Ikeda, Yuji Suzumura, Hitoshi Onuma, Ryoji Okabe, Masanori Takahashi
  • Publication number: 20170015036
    Abstract: In an injection molding method of fiber reinforced resin of the present invention, a resin accumulation region is provided closer to a downstream side than an injection completion position inside a heating cylinder, an injection pressure is given to molten resin that occupies the resin accumulation region in an injection process of a preceding cycle, and a shear force is given to the molten resin that occupies the resin accumulation region in a plasticizing process of a subsequent cycle. An inside of massive reinforcing fibers F is impregnated with the molten resin by giving a high injection pressure to the molten resin that occupies the resin accumulation region. Next, dispersion of the reinforcing fibers is promoted by giving a shear force in the plasticizing process of the subsequent cycle.
    Type: Application
    Filed: May 30, 2014
    Publication date: January 19, 2017
    Inventors: Toshihiko KARIYA, Munehiro NOBUTA, Naoki TODA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI
  • Publication number: 20170001354
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of additive components without giving an excessive shear force to the additive components. An injection molding method of the present invention includes: a plasticizing process of feeding a resin pellet P and additive components to a heating cylinder 201 including a screw 10 that can rotate around a rotation axis C and can advance and retreat along the rotation axis C, and generating molten resin M by rotating the screw 10 in a normal direction; and an injection process of injecting to a cavity the molten resin M containing the additive components. In the plasticizing process, retreat operation of forcibly retreating the screw 10 is performed at a predetermined velocity by a predetermined stroke D1 or a predetermined time.
    Type: Application
    Filed: April 20, 2015
    Publication date: January 5, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Publication number: 20170001353
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of reinforcing fibers without giving an excessive shear force to the reinforcing fibers. A screw is provided inside a heating cylinder of an injection molding machine to which a resin pellet is fed on an upstream side in a conveyance direction of resin and to which reinforcing fibers are fed on a downstream side therein, and includes: a first stage at which the resin pellet which is fed is melted; and a second stage that continues to the first stage, and at which molten resin and the reinforcing fibers are mixed with each other. A second flight provided at the second stage includes: a large-diameter flight with a relatively large outer diameter; and a small-diameter flight with a relatively small outer diameter.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 5, 2017
    Applicant: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Toshihiko KARIYA, Munehiro NOBUTA, Naoki TODA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI
  • Publication number: 20160009010
    Abstract: The injection molding apparatus of the present invention includes: a heating cylinder; a screw that is provided rotatably in an inner portion of the heating cylinder; a resin feed hopper that feeds a resin pellet; and a fiber feed device that is provided ahead of the resin feed hopper and feeds reinforcing fibers into the heating cylinder. The screw includes a first stage that is located on a rear side, and in which the resin pellet is melted, and a second stage that is located on a front side, and in which the melted resin pellet and the reinforcing fibers are mixed, and a lead of a second flight provided in the second stage is larger than a lead of a first flight provided in the first stage.
    Type: Application
    Filed: November 6, 2013
    Publication date: January 14, 2016
    Inventors: Toshihiko KARIYA, Naoki TODA, Munehiro NOBUTA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI, Kosuke IKEDA, Yuji SUZUMURA, Hitoshi ONUMA, Ryoji OKABE, Masanori TAKAHASHI
  • Patent number: 8753471
    Abstract: Disclosed is a vacuum heat insulating material. Also disclosed is a heat insulating box using the vacuum heat insulating material. The vacuum heat insulating material includes a core member and envelope members having gas-barrier properties and including heat-seal layers. The envelope members are opposed to each other in such a manner that the core member is disposed between the heat-seal layers. The envelope members are entirely heated to a temperature at which the heat-seal layers are melted, and the heat-seal layers are heat sealed to each other by applying uniform pressure to the entire envelope members from outside to inside the envelope members.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 17, 2014
    Assignee: Panasonic Corporation
    Inventors: Muneto Yamada, Kazuo Hashimoto, Hiroaki Katsumura, Kiyoshi Kinoshita
  • Publication number: 20130195712
    Abstract: There is provided a method for obtaining a pure melt in which the impurities Mn, Al, Ti, Pb, Zn, and B are removed from molten cast iron and depletion of useful C and Si is suppressed, the method wherein an excess oxygen flame having a theoretical combustion ratio of fuel and oxygen (amount of oxygen (volume)×5/amount of fuel (volume)) of 1 to 1.5 is directly exposed to the surface of pre-melted molten cast iron, the temperature of the molten cast iron is held at 1250° C. or more and less than 1500° C. while the melt surface is superheated and an acidic slag is brought into contact with the melt, and an oxygen-containing gas is injected into the interior of the molten cast iron.
    Type: Application
    Filed: January 24, 2011
    Publication date: August 1, 2013
    Applicants: KIMURA CHUZOSHO CO., LTD., MIE PREFECTURE, SENSHU CORPORATION, NANIWA ROKI CO., LTD., HITACHI METALS, LTD., KINOSHITA MANUFACTORY CO., LTD.
    Inventors: Toshitake Kanno, Ilgoo Kang, Takao Fujikawa, Hiromitsu Takeuchi, Kiyoshi Kinoshita, Hirotoshi Murata, Nobuya Yamamoto, Tatsuo Atsumi
  • Publication number: 20110030892
    Abstract: Disclosed is a vacuum heat insulating material. Also disclosed is a heat insulating box using the vacuum heat insulating material. The vacuum heat insulating material includes a core member and envelope members having gas-barrier properties and including heat-seal layers. The envelope members are opposed to each other in such a manner that the core member is disposed between the heat-seal layers. The envelope members are entirely heated to a temperature at which the heat-seal layers are melted, and the heat-seal layers are heat sealed to each other by applying uniform pressure to the entire envelope members from outside to inside the envelope members.
    Type: Application
    Filed: February 2, 2010
    Publication date: February 10, 2011
    Applicant: Panasonic Corporation
    Inventors: Muneto Yamada, Kazuo Hashimoto, Hiroaki Katsumura, Kiyoshi Kinoshita
  • Publication number: 20090186176
    Abstract: Disclosed is a vacuum heat insulating material. Also disclosed is a heat insulating box using the vacuum heat insulating material. The vacuum heat insulating material includes a core member and envelope members having gas-barrier properties and including heat-seal layers. The envelope members are opposed to each other in such a manner that the core member is disposed between the heat-seal layers. The envelope members are entirely heated to a temperature at which the heat-seal layers are melted, and the heat-seal layers are heat sealed to each other by applying uniform pressure to the entire envelope members from outside to inside the envelope members.
    Type: Application
    Filed: December 6, 2005
    Publication date: July 23, 2009
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Muneto Yamada, Kazuo Hashimoto, Hiroaki Katsumura, Kiyoshi Kinoshita
  • Publication number: 20080121387
    Abstract: A heat exchanger is formed by connecting tube-group blocks along a tube axis, where each one of tube-group blocks includes a plurality of substrates having a large number of through holes, which communicate with insides of a plurality of tubes placed between the substrates. A length of the tubes can be shortened so that the tube-group block can be formed within a predetermined size. The substrates and the tubes can be formed by injection molding or die-casting simultaneously with ease, so that the manufacturing steps of inserting the tubes and bonding the substrates can be eliminated. The heat exchanger can be available at a lower cost while it maintains excellent heat exchanging performance.
    Type: Application
    Filed: November 18, 2005
    Publication date: May 29, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Mitsunori Taniguchi, Osao Kido, Kiyoshi Kinoshita, Takashi Okutani