Patents by Inventor Klemens Pruegl

Klemens Pruegl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10006968
    Abstract: Sensor devices and methods are provided where a second magnetoresistive sensor stack is provided on top of a first magnetoresistive sensor stack.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: June 26, 2018
    Assignee: Infineon Technologies AG
    Inventor: Klemens Pruegl
  • Patent number: 9959890
    Abstract: A magnetoresistive device that can include a magnetoresistive stack and an etch-stop layer (ESL) disposed on the magnetoresistive stack. A method of manufacturing the magnetoresistive device can include: depositing the magnetoresistive stack, the ESL and a mask layer on a substrate; performing a first etching process to etch a portion of the mask layer to expose a portion of the ESL; and performing a second etching process to etch the exposed portion of the ESL. The second etching process can also etch a portion of the magnetoresistive stack. The first and second etching processes can be different. For example, the first etching process can be a reactive etching process and the second etching process can be a non-reactive etching process.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 1, 2018
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Raberg, Andreas Strasser, Hermann Wendt, Klemens Pruegl
  • Patent number: 9934966
    Abstract: In various embodiments, a method for processing a carrier is provided. The method for processing a carrier may include: forming a first catalytic metal layer over a carrier; forming a source layer over the first catalytic metal layer; forming a second catalytic metal layer over the source layer, wherein the thickness of the second catalytic metal layer is larger than the thickness of the first catalytic metal layer; and subsequently performing an anneal to enable diffusion of the material of the source layer forming an interface layer adjacent to the surface of the carrier from the diffused material of the source layer.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: April 3, 2018
    Assignee: Infineon Technologies AG
    Inventors: Guenther Ruhl, Klemens Pruegl
  • Patent number: 9915707
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: March 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Publication number: 20180003776
    Abstract: The present disclosure relates to a magnetic sensor device having at least one magneto-resistive structure. The magneto-resistive structure comprises a magnetic free layer configured to generate a closed flux magnetization pattern in the free layer, and a magnetic reference layer having non-closed flux reference magnetization pattern; and a magnetic flux concentrator configured to increase a flux density of an external magnetic field in the magnetic free layer.
    Type: Application
    Filed: May 23, 2017
    Publication date: January 4, 2018
    Inventors: Dieter Suess, Hubert Brueckl, Klemens Pruegl, Wolfgang Raberg, Armin Satz
  • Publication number: 20170371148
    Abstract: Embodiments relate to microelectromechanical systems (MEMS) and more particularly to membrane structures comprising pixels for use in, e.g., display devices. In embodiments, a membrane structure comprises a monocrystalline silicon membrane above a cavity formed over a silicon substrate. The membrane structure can comprise a light interference structure that, depending upon a variable distance between the membrane and the substrate, transmits or reflects different wavelengths of light. Related devices, systems and methods are also disclosed.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 28, 2017
    Inventors: Roland Meier, Klemens Pruegl, Bernhard Winkler, Thomas Popp, Raimund Foerg
  • Patent number: 9812496
    Abstract: In the method of manufacturing a magnetoresistive sensor module, at first a composite arrangement out of a semiconductor substrate and a metal-insulator arrangement is provided, wherein a semiconductor circuit arrangement is integrated adjacent to a main surface of the semiconductor substrate into the same, wherein the metal-insulator arrangement is arranged on the main surface of the semiconductor substrate and comprises a structured metal sheet and insulation material at least partially surrounding the structured metal sheet, wherein the structured metal sheet is electrically connected to the semiconductor circuit arrangement. Then, a magnetoresistive sensor structure is applied onto a surface of the insulation material of the composite arrangement, and finally an electrical connection between the magnetoresistive sensor structure and the structured metal sheet is established, so that the magnetoresistive sensor structure is connected to the integrated circuit arrangement.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: November 7, 2017
    Assignee: Infineon Technologies AG
    Inventors: Stefan Kolb, Klemens Pruegl, Juergen Zimmer
  • Publication number: 20170314965
    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 2, 2017
    Inventors: Juergen Zimmer, Klemens Pruegl
  • Patent number: 9798132
    Abstract: Embodiments relate to microelectromechanical systems (MEMS) and more particularly to membrane structures comprising pixels for use in, e.g., display devices. In embodiments, a membrane structure comprises a monocrystalline silicon membrane above a cavity formed over a silicon substrate. The membrane structure can comprise a light interference structure that, depending upon a variable distance between the membrane and the substrate, transmits or reflects different wavelengths of light. Related devices, systems and methods are also disclosed.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: October 24, 2017
    Assignee: Infineon Technologies AG
    Inventors: Roland Meier, Klemens Pruegl, Bernhard Winkler, Thomas Popp, Raimund Foerg
  • Publication number: 20170301721
    Abstract: Embodiments related to a method of manufacturing of an imager and an imager device are shown and depicted.
    Type: Application
    Filed: May 4, 2017
    Publication date: October 19, 2017
    Inventors: Dirk Meinhold, Emanuele Bruno Bodini, Felix Braun, Hermann Gruber, Uwe Hoeckele, Dirk Offenberg, Klemens Pruegl, Ines Uhlig
  • Patent number: 9733107
    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: August 15, 2017
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl
  • Publication number: 20170227613
    Abstract: An embodiment relates to a magnetic sensor device (500) comprising a magneto-resistive structure (501). The magneto-resistive structure (501) comprises a magnetic free layer (502) configured to spontaneously generate a closed flux magnetization pattern in the free layer (502). The magneto-resistive structure (500) also comprises a magnetic reference layer (506) having a non-closed flux reference magnetization pattern. The magnetic sensor device (500) further comprises a current generator (580) configured to generate an electric current in one or more layers of the magneto-resistive structure (501). The electric current has a non-zero directional component perpendicular to the reference magnetization pattern.
    Type: Application
    Filed: December 12, 2016
    Publication date: August 10, 2017
    Inventors: Anton BACHLEITNER HOFMANN, Hubert BRUECKL, Klemens PRUEGL, Wolfgang RABERG, Armin SATZ, Dieter SUESS, Tobias WURFT
  • Publication number: 20170160350
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Publication number: 20170154813
    Abstract: According to various embodiments, a device may include: a semiconductor region; a metallization layer disposed over the semiconductor region; and a self-organizing barrier layer disposed between the metallization layer and the semiconductor region, wherein the self-organizing barrier layer comprises a first metal configured to be self-segregating from the metallization layer.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventors: Werner Robl, Michael Fugger, Carsten Schaeffer, Michael Nelhiebel, Klemens Pruegl
  • Patent number: 9659992
    Abstract: Embodiments related to a method of manufacturing of an imager and an imager device are shown and depicted.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: May 23, 2017
    Assignee: Infineon Technologies AG
    Inventors: Dirk Meinhold, Emanuele Bruno Bodini, Felix Braun, Hermann Gruber, Uwe Hoeckele, Dirk Offenberg, Klemens Pruegl, Ines Uhlig
  • Publication number: 20170125044
    Abstract: A magnetoresistive device that can include a magnetoresistive stack and an etch-stop layer (ESL) disposed on the magnetoresistive stack. A method of manufacturing the magnetoresistive device can include: depositing the magnetoresistive stack, the ESL and a mask layer on a substrate; performing a first etching process to etch a portion of the mask layer to expose a portion of the ESL; and performing a second etching process to etch the exposed portion of the ESL. The second etching process can also etch a portion of the magnetoresistive stack. The first and second etching processes can be different. For example, the first etching process can be a reactive etching process and the second etching process can be a non-reactive etching process.
    Type: Application
    Filed: January 6, 2017
    Publication date: May 4, 2017
    Applicant: Infineon Technologies AG
    Inventors: Wolfgang Raberg, Andreas Strasser, Hermann Wendt, Klemens Pruegl
  • Publication number: 20170110505
    Abstract: In the method of manufacturing a magnetoresistive sensor module, at first a composite arrangement out of a semiconductor substrate and a metal-insulator arrangement is provided, wherein a semiconductor circuit arrangement is integrated adjacent to a main surface of the semiconductor substrate into the same, wherein the metal-insulator arrangement is arranged on the main surface of the semiconductor substrate and comprises a structured metal sheet and insulation material at least partially surrounding the structured metal sheet, wherein the structured metal sheet is electrically connected to the semiconductor circuit arrangement. Then, a magnetoresistive sensor structure is applied onto a surface of the insulation material of the composite arrangement, and finally an electrical connection between the magnetoresistive sensor structure and the structured metal sheet is established, so that the magnetoresistive sensor structure is connected to the integrated circuit arrangement.
    Type: Application
    Filed: December 27, 2016
    Publication date: April 20, 2017
    Inventors: Stefan Kolb, Klemens Pruegl, Juergen Zimmer
  • Patent number: 9627196
    Abstract: According to various embodiments, a method for processing a carrier may include: co-depositing at least one metal from a first source and carbon from a second source over a surface of the carrier to form a first layer; forming a second layer over the first layer, the second layer including a diffusion barrier material, wherein the solubility of carbon in the diffusion barrier material is less than in the at least one metal; and forming a graphene layer at the surface of the carrier from the first layer by a temperature treatment.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: April 18, 2017
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Guenther Ruhl, Klemens Pruegl
  • Patent number: 9620707
    Abstract: A magnetoresistive device can include a first magnetic layer structure having a first length, a barrier layer disposed on the first magnetic layer structure, a second magnetic layer structure disposed on the barrier layer and having a second length that is less than the first length.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: April 11, 2017
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Andreas Strasser, Wolfgang Raberg, Klemens Pruegl
  • Patent number: 9606197
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: March 28, 2017
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen