Patents by Inventor Koen J. Weijand

Koen J. Weijand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8326426
    Abstract: Example embodiments of an implantable device are configured to be implanted within a patient to provide medical therapy to the patient. In general, an implantable rechargeable device includes a rechargeable battery and an electronic board assembly arranged within a case and an antenna electrically coupled to the rechargeable battery. The antenna is configured to receive power and to transfer at least a portion of the received power to the rechargeable battery for recharging. A phase change material is arranged within the case around at least a portion of the electronic board assembly. The phase change material is configured to transition from a first phase to a second phase at a transition temperature when the insulating material absorbs heat (e.g., from the electronic board assembly).
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: December 4, 2012
    Assignee: EnteroMedics, Inc.
    Inventors: Arnold W. Thornton, Adrianus P. Donders, Jason W. Sprain, Koen J. Weijand
  • Patent number: 8103349
    Abstract: An apparatus for applying a signal to a nerve for the treatment of a disorder includes a first electrode and a second electrode. Each of the electrodes is adapted to be secured to a nerve of a patient. A signal generator is electrically connected to each of the first and second electrodes. The signal generator is adapted to create a signal having a first waveform at the first electrode and a second waveform at the second electrode. The waveforms have parameters selected to block propagation of neural action potentials. The waveforms have a repeating pattern of cycles of pulses with a delay period between at least selected ones of said pulses. In one embodiment, the first and second waveforms are out of phase for a cycle of one of the waveforms to occur during a delay period of the other of the waveforms.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 24, 2012
    Assignee: EnteroMedics Inc.
    Inventors: Adrianus P. Donders, Koen J. Weijand, Mark B. Knudson
  • Publication number: 20100256708
    Abstract: Example embodiments of an implantable device are configured to be implanted within a patient to provide medical therapy to the patient. In general, an implantable rechargeable device includes a rechargeable battery and an electronic board assembly arranged within a case and an antenna electrically coupled to the rechargeable battery. The antenna is configured to receive power and to transfer at least a portion of the received power to the rechargeable battery for recharging. A phase change material is arranged within the case around at least a portion of the electronic board assembly. The phase change material is configured to transition from a first phase to a second phase at a transition temperature when the insulating material absorbs heat (e.g., from the electronic board assembly).
    Type: Application
    Filed: April 3, 2009
    Publication date: October 7, 2010
    Inventors: Arnold W. Thornton, Adrianus P. Donders, Jason W. Sprain, Koen J. Weijand
  • Publication number: 20100094375
    Abstract: An apparatus for applying a signal to a nerve for the treatment of a disorder includes a first electrode and a second electrode. Each of the electrodes is adapted to be secured to a nerve of a patient. A signal generator is electrically connected to each of the first and second electrodes. The signal generator is adapted to create a signal having a first waveform at the first electrode and a second waveform at the second electrode. The waveforms have parameters selected to block propagation of neural action potentials. The waveforms have a repeating pattern of cycles of pulses with a delay period between at least selected ones of said pulses. In one embodiment, the first and second waveforms are out of phase for a cycle of one of the waveforms to occur during a delay period of the other of the waveforms.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 15, 2010
    Applicant: EnteroMedics Inc.
    Inventors: Adrianus P. Donders, Koen J. Weijand, Mark B. Knudson
  • Patent number: 7672727
    Abstract: An apparatus for applying a signal to a nerve for the treatment of a disorder includes a first electrode and a second electrode. Each of the electrodes is adapted to be secured to a nerve of a patient. A signal generator is electrically connected to each of the first and second electrodes. The signal generator is adapted to create a signal having a first waveform at the first electrode and a second waveform at the second electrode. The waveforms have parameters selected to block propagation of neural action potentials. The waveforms have a repeating pattern of cycles of pulses with a delay period between at least selected ones of said pulses. In one embodiment, the first and second waveforms are out of phase for a cycle of one of the waveforms to occur during a delay period of the other of the waveforms.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 2, 2010
    Assignee: EnteroMedics Inc.
    Inventors: Adrianus P. Donders, Koen J. Weijand, Mark B. Knudson
  • Patent number: 7209790
    Abstract: The invention is directed to a programmer for communication with different medical devices that utilize different telemetry communication techniques. The programmer receives telemetry signals from a given medical device, and selects an appropriate communication mode, which can be pre-programmed into the programmer as one of a plurality of possible communication modes. The programmer can configure itself for communication with a given medical device based on the telemetry signal it receives. Specifically the programmer is implemented as a software based, power efficient receiver/transmitter based upon an inexpensive, simple motor-controller DSP.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: April 24, 2007
    Assignee: Medtronic, Inc.
    Inventors: David L. Thompson, Koen J. Weijand, Daniel R. Greeninger
  • Patent number: 7070577
    Abstract: An implantable beneficial agent infusion device featuring a unique energy recovery circuit and a deflectable energy storing member such as a piezo-electric membrane is disclosed. The circuit and deflectable energy storing member cooperate to permit electrical energy employed to activate the member to be at least partially recovered. In a preferred embodiment, the deflectable energy storing member is connected to a seal which is opened to permit the delivery or infusion of a pre-determined amount of a beneficial agent to a patient when the member is deflected or actuated through the application of a sufficiently high voltage thereacross. Charge stored on or in the deflectable energy storing member as a result of the voltage being applied thereacross is recovered by a novel circuit when the deflectable energy storing membrane is permitted to return to its non-actuated state or position.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: July 4, 2006
    Assignee: Medtronic, INC
    Inventors: Markus Haller, Koen J. Weijand
  • Patent number: 6859385
    Abstract: An SRAM has a bit cell for storing a data bit in voltage mode at a data node, and a single bit line for respectively writing to and reading from said data node a data bit in reference current controlled mode. The SRAM has ultra low power consumption and can be used in word based SRAMs.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: February 22, 2005
    Assignee: Zarlink Semiconductor AB
    Inventors: Magnus Karl-Olof Karlsson, Koen J. Weijand, Tony Hans Ohlsson
  • Publication number: 20040064166
    Abstract: The invention is directed to a programmer for communication with different medical devices that utilize different telemetry communication techniques. The programmer receives telemetry signals from a given medical device, and selects an appropriate communication mode, which can be pre-programmed into the programmer as one of a plurality of possible communication modes. The programmer can configure itself for communication with a given medical device based on the telemetry signal it receives.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: David L. Thompson, Daniel R. Greeninger, Koen J. Weijand
  • Publication number: 20030169619
    Abstract: An SRAM has a bit cell for storing a data bit in voltage mode at a data node, and a single bit line for respectively writing to and reading from said data node a data bit in reference current controlled mode. The SRAM has ultra low power consumption and can be used in word based SRAMs.
    Type: Application
    Filed: January 13, 2003
    Publication date: September 11, 2003
    Applicant: Zarlink Semiconductor AB
    Inventors: Magnus Karl-Olof Karlsson, Koen J. Weijand, Tony Hans Ohlsson
  • Patent number: 6558345
    Abstract: There is provided an implantable system and method for monitoring pancreatic beta cell electrical activity in a patient in order to obtain a measure of a patient's insulin demand and blood glucose level. A stimulus generator is controlled to deliver stimulus pulses so as to synchronize pancreatic beta cell depolarization, thereby producing an enhanced electrical signal which is sensed and processed. In a specific embodiment, the signal is processed to determine the start and end of beta cell depolarization, from which the depolarization duration is obtained. In order to reduce cardiac interference, each stimulus pulse is timed to be offset from the QRS signal which can interfere with the pancreas sensing. Additionally, the beta cell signals are processed by a correction circuit, e.g., an adaptive filter, to remove QRS artifacts, as well as artifacts from other sources, such as respiration.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: May 6, 2003
    Assignee: Medtronic, Inc.
    Inventors: Richard P. M. Houben, Alexis C. M. Renirie, Koen J. Weijand
  • Patent number: 6488652
    Abstract: An implantable beneficial agent infusion device featuring a unique safety valve assembly is disclosed. In one embodiment of the present invention, a seal in the safety valve assembly is normally closed and only opens upon a deflectable or moveable member to which the seal is attached being electrically, magnetically or electromagnetically activated. The valve assembly is preferably small in size and made of corrosion resistant materials. The valve assembly may be employed in either a passive or an active implantable drug or beneficial agent infusion system.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: December 3, 2002
    Assignee: Medtronic, Inc.
    Inventors: Koen J. Weijand, Markus Haller
  • Patent number: 6484054
    Abstract: Floating and non-floating on-chip capacitors are formed by vertical walls and/or large aspect ratio deep trenches disposed in semiconductor material. By optimizing the through spacing and substrate voltage, a very small parasitic to intended capacitance ratio may be obtained. Capacitors so formed may be used as on-chip charge storage and other types of on-chip capacitors, and eliminate or reduce the number of off-chip capacitors that would otherwise be required. The deep trench capacitors find particularly efficacious application in implantable medical devices where volume, cost and electrical energy consumption must be minimized, and preferably have capacitances which range between about 10 nF and about 1000 uF.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: November 19, 2002
    Assignee: Medtronic, Inc.
    Inventors: Koen J. Weijand, Richard Houben
  • Patent number: 6470212
    Abstract: A system for and method of providing power to an implanted medical device within a patient is disclosed. The system (250) includes a first (262) and a second heat conduit (264) positioned within the patient. A thermoelectric device (252) is connected to the first and second heat conduits for thermally converting the temperature difference between the conduits to a voltage. A DC-DC converter (254) is connected to the thermoelectric element and increases the voltage. A storage element (256) is connected to the DC-DC converter-for receiving the increased voltage. The storage element is also connected to the implanted medical device (258), thereby providing power to the implanted medical device.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: October 22, 2002
    Assignee: Medtronic, Inc.
    Inventors: Koen J. Weijand, Patrick J. Combs, Daniel R. Greeninger, Richard P. M. Houben
  • Patent number: 6406421
    Abstract: There is provided a system and method for continually monitoring the occurrence of contraction during stimulation of skeletal muscle which is employed in a cardiac assist-type system. During delivery of a periodic burst, or train of stimulus pulses, the impedance of the muscle between the electrodes through which the pulses are delivered is monitored, and evaluated to determine whether or not stimulation has been achieved. In a particular embodiment, the impedance and impedance derivative values are accumulated throughout the burst, and assessed to determine whether the impedance change corresponded to a full muscle contraction. In the event of failure to stimulate the muscle to contraction, the system can automatically adjust the pulse output parameters to achieve reliable contraction.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: June 18, 2002
    Assignee: Medtronic, Inc.
    Inventors: Pierre Andre Grandjean, David E. Francischelli, Kendra K. Gealow, Robert Leinders, Martinus A. G. M. Bakx, Koen J. Weijand
  • Publication number: 20020026141
    Abstract: There is provided an implantable system and method for monitoring pancreatic beta cell electrical activity in a patient in order to obtain a measure of a patient's insulin demand and blood glucose level. A stimulus generator is controlled to deliver stimulus pulses so as to synchronize pancreatic beta cell depolarization, thereby producing an enhanced electrical signal which is sensed and processed. In a specific embodiment, the signal is processed to determine the start and end of beta cell depolarization, from which the depolarization duration is obtained. In order to reduce cardiac interference, each stimulus pulse is timed to be offset from the QRS signal which can interfere with the pancreas sensing. Additionally, the beta cell signals are processed by a correction circuit, e.g., an adaptive filter, to remove QRS artifacts, as well as artifacts from other sources, such as respiration.
    Type: Application
    Filed: September 5, 2001
    Publication date: February 28, 2002
    Applicant: Medtronic, Inc.
    Inventors: Richard P. M. Houben, Alexis C.M. Renirie, Koen J. Weijand
  • Publication number: 20020008267
    Abstract: Floating and non-floating on-chip capacitors are formed by vertical walls and/or large aspect ratio deep trenches disposed in semiconductor material. By optimizing the through spacing and substrate voltage, a very small parasitic to intended capacitance ratio may be obtained. Capacitors so formed may be used as on-chip charge storage and other types of on-chip capacitors, and eliminate or reduce the number of off-chip capacitors that would otherwise be required. The deep trench capacitors find particularly efficacious application in implantable medical devices where volume, cost and electrical energy consumption must be minimized, and preferably have capacitances which range between about 10 nF and about 1000 uF.
    Type: Application
    Filed: June 12, 2001
    Publication date: January 24, 2002
    Inventors: Koen J. Weijand, Richard Houben
  • Patent number: 6329929
    Abstract: There is provided a telemetry system with a receiver which enables detection of pulsed high frequency data (hf) signals in a manner which suppresses noise which may be present within the high frequency bandwidth. The transmitter carrier, which may be subject to some instability, is encoded at a symbol rate which is generated at a lower frequency than the hf, but which is reliably stable. The receiver detects the phase of each received hf pulse, and generates a phase-locked signal which is synchronized to the transmitter symbol signal. The phase-locked signal in turn is used to demodulate the received pulsed signals. In a specific DSP embodiment, the phase-lock loop has a numerically controlled oscillator which has a center frequency which corresponds to the aliased phase difference between the hf carrier phase and the phase of each pulse, thereby obtaining a signal which carries information as to the exact symbol rate.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: December 11, 2001
    Assignee: Medtronic Inc.
    Inventors: Koen J. Weijand, Richard Houben
  • Patent number: 6305381
    Abstract: A system and method for locating an implantable medical device. The system consists of a flat “pancake” antenna coil positioned concentric with the implantable medical device target, e.g. the drug reservoir septum. The system further features a three location antenna array which is separate from the implantable device and external to the patient. The antenna array features three or more separate antennas which are used to sense the energy emitted from the implanted antenna coil. The system further features a processor to process the energy ducted by the antenna array. The system senses the proximity to the implant coil and, thus, the implant device by determining when an equal amount of energy is present in each of the antennas of the antenna array and if each such ducted energy is greater than a predetermined minimum. When such a condition is met, the antenna array is aligned with the implant coil. Thus the needle port through the antenna array is lined up with the septum of the drug reservoir.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: October 23, 2001
    Assignee: Medtronic Inc.
    Inventors: Koen J. Weijand, Markus Haller, Marty Bakx, Robert Leinders, Todd Goblish, Jon Werder
  • Patent number: 6298271
    Abstract: A medical system having improved telemetry, the medical system featuring a programmer having a programming head. The system provides improved telemetry due to the unique antenna scheme within the programmer head. The antenna scheme utilizes a first antenna and a second antenna, the antennas disposed in a concentric and co-planar manner. This concentric and co-planar disposition permits the programmer head to be of much smaller and, thus, a more portable size than was previously possible. The antenna is further coupled with circuitry or software or both to reduce far field response (noise). The antenna may be constructed using printed circuit board, and thus be integrated with circuitry.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: October 2, 2001
    Assignee: Medtronic, Inc.
    Inventor: Koen J Weijand