Patents by Inventor Koji Sugiura

Koji Sugiura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11602742
    Abstract: Provided is an exhaust gas purification device that ensures an improved purification performance and a suppressed pressure loss. An exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. disposed on a surface on the inflow cell side in an inflow side region of the partition wall. When a gas permeability coefficient of an inflow side partition wall portion including the inflow side region of the partition wall and the inflow cell side catalyst layer is Ka and a gas permeability coefficient of an outflow side partition wall portion including an outflow side region at least from the predetermined position to an outflow side end of the partition wall is Kb, a ratio Ka/Kb of the gas permeability coefficients is within a range of 0.4 or more and 0.8 or less.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: March 14, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Sato, Ryota Nakashima, Masatoshi Ikebe, Keisuke Murawaki, Hirotaka Ori
  • Publication number: 20220387983
    Abstract: There is provided an exhaust gas purification device that shows a high HC removal performance under a condition in which a rich air-fuel mixture is introduced. The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end and a downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region including the upstream end of the substrate. The second catalyst layer is disposed inside the partition wall in a downstream region including the downstream end of the substrate. The first catalyst layer contains a first metal catalyst and alumina-zirconia composite oxide. The second catalyst layer contains a second metal catalyst.
    Type: Application
    Filed: May 24, 2022
    Publication date: December 8, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
  • Publication number: 20220370997
    Abstract: The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end, a downstream end, and a porous partition wall defining a plurality of cells extending between the upstream end and the downstream end. The plurality of cells include an inlet cell opening at the upstream end and sealed at the downstream end, and an outlet cell adjacent to the inlet cell sealed at the upstream end and opening at the downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region. In a downstream region, the second catalyst layer is disposed inside the partition wall, and a second catalyst-containing wall including the partition wall and the second catalyst layer has a porosity of 35% or more.
    Type: Application
    Filed: May 2, 2022
    Publication date: November 24, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
  • Publication number: 20220347626
    Abstract: An exhaust gas purification device suppresses a pressure loss increase and includes a honeycomb substrate and inflow cell side catalyst layer. The substrate includes a porous partition wall defining several cells extending from an inflow side end surface to an outflow side end surface. The cells include an inflow and outflow cell adjacent across the wall. The inflow cell has an open inflow side end and sealed outflow side end. The outflow cell has a sealed inflow side end and open outflow side end. The catalyst layer is on an inflow cell side surface in an region extending from the inflow side end positioned 10% or more of the partition wall length. At this position, a filled portion of the inflow cell side catalyst layer pores are 40% or less. The pores are present to a depth of 50% of a thickness of the partition wall.
    Type: Application
    Filed: April 11, 2022
    Publication date: November 3, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Akemi SATO, Takeshi HIRABAYASHI, Koji SUGIURA, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
  • Patent number: 11473472
    Abstract: An exhaust gas control apparatus includes a honeycomb substrate and an inlet cell-side catalyst layer. The honeycomb substrate includes a porous partition wall that defines a plurality of cells extending from an inlet-side end face to an outlet-side end face. The cells include an inlet cell and an outlet cell that are adjacent to each other with the partition wall therebetween. The inlet cell is open at its inlet-side end and is sealed at its outlet-side end. The outlet cell is sealed at its inlet-side end and is open at its outlet-side end. The inlet cell-side catalyst layer is provided on a surface on the inlet cell side of the partition wall and extends from an inlet-side end of the partition wall. Porosity of the inlet cell-side catalyst layer is in a specific range.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: October 18, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Satou, Keisuke Murawaki, Masatoshi Ikebe, Takaya Ota, Ryota Nakashima, Hirotaka Ori
  • Patent number: 11415039
    Abstract: There is provided a structure including: a substrate including a first and a second ends, and a porous partition wall defining a first and a second cells extending between the first and the second ends; a first catalyst; and a second catalyst. In a first area, the first catalyst is disposed on a first surface of the partition wall, and the partition wall with the first catalyst disposed on the partition wall is impermeable to gas. In a second area, the first catalyst is not provided, the second catalyst is disposed in a region including at least a part inside the partition wall, the part facing the first cell, and the partition wall with the second catalyst disposed in the partition wall is permeable to gas. In a third area, any of the first catalyst or the second catalyst is not provided, and the partition wall is permeable to gas.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: August 16, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Sato, Masatoshi Ikebe, Ryota Nakashima, Yasutaka Nomura
  • Patent number: 11267486
    Abstract: Control is performed so as to detect a brain wave or a heartbeat of a driver of a vehicle during automatic driving of the vehicle, and use a plurality of indexes further correlated with sleepiness of the driver among indexes related to the brain wave or the heartbeat of the driver to calculate a concentration index CI, which is an index indicating driving concentration of the driver, at each preset control interval.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: March 8, 2022
    Assignee: ISUZU MOTORS LIMITED
    Inventor: Koji Sugiura
  • Publication number: 20210324777
    Abstract: An exhaust gas control apparatus includes a honeycomb substrate and an inlet cell-side catalyst layer. The honeycomb substrate includes a porous partition wall that defines a plurality of cells extending from an inlet-side end face to an outlet-side end face. The cells include an inlet cell and an outlet cell that are adjacent to each other with the partition wall therebetween. The inlet cell is open at its inlet-side end and is sealed at its outlet-side end. The outlet cell is sealed at its inlet-side end and is open at its outlet-side end. The inlet cell-side catalyst layer is provided on a surface on the inlet cell side of the partition wall and extends from an inlet-side end of the partition wall. Porosity of the inlet cell-side catalyst layer is in a specific range.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATOU, Keisuke MURAWAKI, Masatoshi IKEBE, Takaya OTA, Ryota NAKASHIMA, Hirotaka ORI
  • Publication number: 20210283589
    Abstract: Provided is an exhaust gas purification device that ensures an improved purification performance and a suppressed pressure loss. An exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. disposed on a surface on the inflow cell side in an inflow side region of the partition wall. When a gas permeability coefficient of an inflow side partition wall portion including the inflow side region of the partition wall and the inflow cell side catalyst layer is Ka and a gas permeability coefficient of an outflow side partition wall portion including an outflow side region at least from the predetermined position to an outflow side end of the partition wall is Kb, a ratio Ka/Kb of the gas permeability coefficients is within a range of 0.4 or more and 0.8 or less.
    Type: Application
    Filed: February 18, 2021
    Publication date: September 16, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Ryota NAKASHIMA, Masatoshi IKEBE, Keisuke MURAWAKI, Hirotaka ORI
  • Publication number: 20210235702
    Abstract: An antiviral agent of the present invention includes an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g. The inorganic solid acid preferably includes an inorganic phosphoric acid compound, an inorganic silicic acid compound, or an inorganic oxide. An acid strength (pKa) of an acid site in the inorganic solid acid is preferably 3.3 or less.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 5, 2021
    Applicant: TOAGOSEI CO., LTD.
    Inventor: Koji SUGIURA
  • Publication number: 20210033009
    Abstract: An exhaust gas control apparatus includes: a honeycomb substrate including an inflow cell and an outflow cell adjacent to each other with a partition wall sandwiched between the inflow cell and the outflow cell; a first sealing part provided at an outflow side end of the inflow cell, and a second sealing part provided at an inflow side end of the outflow cell; and a catalyst layer provided on the partition wall, and at least one of the first sealing part and the second sealing part is an OSC material-containing sealing part containing an OSC material and a sealant, and a concentration of the OSC material in the OSC material-containing sealing part is uniform in an extending direction.
    Type: Application
    Filed: June 17, 2020
    Publication date: February 4, 2021
    Inventors: Koji SUGIURA, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA, Hirotaka ORI
  • Publication number: 20200368735
    Abstract: An exhaust gas purification device that allows suppressing an increase in pressure loss is provided. The exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. The substrate includes a porous partition wall which defines inflow cells and outflow cells extending from an inflow side end to an outflow side end. The inflow cell side catalyst layer is disposed on a surface on the inflow cell side in an inflow cell side catalyst region from an inflow side end to a position close to an outflow side end of the partition wall. The permeability of a portion including an outflow side region from the position to the outflow side end of the partition wall is higher than a gas permeability of a portion including the inflow cell side catalyst region of the partition wall and the inflow cell side catalyst layer.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 26, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA, Hirotaka ORI
  • Publication number: 20200332698
    Abstract: There is provided a structure including: a substrate including a first and a second ends, and a porous partition wall defining a first and a second cells extending between the first and the second ends; a first catalyst; and a second catalyst. In a first area, the first catalyst is disposed on a first surface of the partition wall, and the partition wall with the first catalyst disposed on the partition wall is impermeable to gas. In a second area, the first catalyst is not provided, the second catalyst is disposed in a region including at least a part inside the partition wall, the part facing the first cell, and the partition wall with the second catalyst disposed in the partition wall is permeable to gas. In a third area, any of the first catalyst or the second catalyst is not provided, and the partition wall is permeable to gas.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 22, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA
  • Patent number: 10807066
    Abstract: To provide a chemical adsorbent for an acid gas, the chemical adsorbent having a high chemical adsorbing performance and not causing resin degradation, and to provide a deodorant processed product such as paper, nonwoven fabric, or fibers, the deodorant processed product exhibiting an excellent deodorizing performance by using the adsorbent. A chemical adsorbent for an acid gas, the chemical adsorbent including an amorphous zirconyl hydroxide represented by Formula (1) below, as a main component, and a deodorant processed product in which the chemical adsorbent for an acid gas is applied or kneaded: (ZrO)1?x(HfO)x(OH)y.zH2O??(1) in which, in Formula (1): x, y, and z each represents a positive number; x represents a number from 0.0001 to 0.005; y represents a number from 1.9 to 3.0; and z represents a number from 0.05 to 1.0.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: October 20, 2020
    Assignee: TOAGOSEI CO., LTD.
    Inventor: Koji Sugiura
  • Publication number: 20200316241
    Abstract: The deodorant dispersion of the present invention includes (A) two or more powdery inorganic chemical adsorbents, (B) a dispersing agent, and (C) a dispersion medium, a content proportion of the component (A) is in a range from 10% to 30% by mass based on a total of the deodorant dispersion, a content proportion of the component (B) is in a range from 1% to 10% by mass based on a total of the deodorant dispersion, and a median particle diameter of a dispersoid is in a range from 0.1 ?m to 0.4 ?m. A gas adsorption capacity of the component (A) is preferably 25 mL/g or more.
    Type: Application
    Filed: March 9, 2017
    Publication date: October 8, 2020
    Inventor: Koji SUGIURA
  • Publication number: 20200316578
    Abstract: There is provided a filter catalyst that has a wall-flow structure, and the filter catalyst has an excellent purification performance. The embodiment is a filter catalyst including a wall-flow type substrate that includes an inlet-side cell, an outlet-side cell, and a partition wall. The inlet-side cell has an open end portion on an exhaust gas flow-in side and a closed end portion on an exhaust gas flow-out side. The outlet-side cell is adjacent to the inlet-side cell and has an open end portion on the exhaust gas flow-out side and a closed end portion on the exhaust gas flow-in side. The partition wall has a porous structure and interposes between the inlet-side cell and the outlet-side cell. The filter catalyst includes an oxygen occlusion portion and a catalyst portion dispersed and disposed in the porous structure. The oxygen occlusion portion is disposed on a wall surface of the porous structure.
    Type: Application
    Filed: March 13, 2020
    Publication date: October 8, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Naoto MIYOSHI, Koji SUGIURA, Hiromasa NISHIOKA, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA, Hirotaka ORI
  • Patent number: 10669669
    Abstract: The deodorant of the present invention is characterized in that the deodorant consists of a crystalline zinc oxide in which zinc oxide and aluminum oxide are composited, and a molar ratio (ZnO/Al2O3) of the zinc oxide to the aluminum oxide is in a range from 40 to 80. The deodorant has a high deodorizing effect against sulfur gases and acidic gases. A preferable average particle size of the deodorant is 0.2 to 15 ?m.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: June 2, 2020
    Assignee: TOAGOSEI CO., LTD.
    Inventor: Koji Sugiura
  • Publication number: 20200122746
    Abstract: Control is performed so as to detect a brain wave or a heartbeat of a driver of a vehicle during automatic driving of the vehicle, and use a plurality of indexes further correlated with sleepiness of the driver among indexes related to the brain wave or the heartbeat of the driver to calculate a concentration index CI, which is an index indicating driving concentration of the driver, at each preset control interval.
    Type: Application
    Filed: May 11, 2018
    Publication date: April 23, 2020
    Inventor: Koji SUGIURA
  • Publication number: 20200062272
    Abstract: Stress tolerance X of a driver of a vehicle is determined in advance. A driver assistance format is selected based on the stress tolerance X of the driver determined in advance when it is necessary to forcibly switch the vehicle from automatic driving to manual driving of the driver. Driver assistance is performed when the vehicle is switched from the automatic driving to the manual driving based on the selected driver assistance format.
    Type: Application
    Filed: May 11, 2018
    Publication date: February 27, 2020
    Inventor: Koji SUGIURA
  • Publication number: 20190232250
    Abstract: To provide a chemical adsorbent for an acid gas, the chemical adsorbent having a high chemical adsorbing performance and not causing resin degradation, and to provide a deodorant processed product such as paper, nonwoven fabric, or fibers, the deodorant processed product exhibiting an excellent deodorizing performance by using the adsorbent. A chemical adsorbent for an acid gas, the chemical adsorbent including an amorphous zirconyl hydroxide represented by Formula (1) below, as a main component, and a deodorant processed product in which the chemical adsorbent for an acid gas is applied or kneaded: (ZrO)1?x(HfO)x(OH)y.zH2O ??(1) in which, in Formula (1): x, y, and z each represents a positive number; x represents a number from 0.0001 to 0.005; y represents a number from 1.9 to 3.0; and z represents a number from 0.05 to 1.0.
    Type: Application
    Filed: October 18, 2017
    Publication date: August 1, 2019
    Applicant: TOAGOSEI CO., LTD.
    Inventor: Koji SUGIURA