Patents by Inventor Kourosh Kamshad
Kourosh Kamshad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12070902Abstract: Additive manufacturing can involve dispensing a powdered material to form a layer of a powder bed on a support surface of a build platform. A portion of the layer of the powder bed may be selectively melted or fused to form one or more temporary walls out of the fused portion of the layer of the powder bed to contain another portion of the layer of the powder bed on the build platform.Type: GrantFiled: June 24, 2021Date of Patent: August 27, 2024Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene M. Berdichevsky
-
Patent number: 12042992Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.Type: GrantFiled: November 16, 2022Date of Patent: July 23, 2024Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20240239046Abstract: A method and an apparatus pertaining to recycling and reuse of unwanted light in additive manufacturing can multiplex multiple beams of light including at least one or more beams of light from one or more light sources. The multiple beams of light may be reshaped and blended to provide a first beam of light. A spatial polarization pattern may be applied on the first beam of light to provide a second beam of light. Polarization states of the second beam of light may be split to reflect a third beam of light, which may be reshaped into a fourth beam of light. The fourth beam of light may be introduced as one of the multiple beams of light to result in a fifth beam of light.Type: ApplicationFiled: March 28, 2024Publication date: July 18, 2024Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20240208143Abstract: A method and an apparatus for collecting a powdered material after a print job in powder bed fusion additive manufacturing may involve a build platform supporting a powder bed capable of tilting, inverting, and shaking to separate the powder bed substantially from the build platform in a hopper. The powdered material may be collected in a hopper for reuse in later print jobs. The powder collecting process may be automated to increase efficiency of powder bed fusion additive manufacturing.Type: ApplicationFiled: January 23, 2024Publication date: June 27, 2024Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11964429Abstract: A method and an apparatus pertaining to recycling and reuse of unwanted light in additive manufacturing can multiplex multiple beams of light including at least one or more beams of light from one or more light sources. The multiple beams of light may be reshaped and blended to provide a first beam of light. A spatial polarization pattern may be applied on the first beam of light to provide a second beam of light. Polarization states of the second beam of light may be split to reflect a third beam of light, which may be reshaped into a fourth beam of light. The fourth beam of light may be introduced as one of the multiple beams of light to result in a fifth beam of light.Type: GrantFiled: September 23, 2020Date of Patent: April 23, 2024Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11911964Abstract: A method and an apparatus for collecting a powdered material after a print job in powder bed fusion additive manufacturing may involve a build platform supporting a powder bed capable of tilting, inverting, and shaking to separate the powder bed substantially from the build platform in a hopper. The powdered material may be collected in a hopper for reuse in later print jobs. The powder collecting process may be automated to increase efficiency of powder bed fusion additive manufacturing.Type: GrantFiled: October 28, 2016Date of Patent: February 27, 2024Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11872758Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.Type: GrantFiled: January 17, 2023Date of Patent: January 16, 2024Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20230356466Abstract: A method of additive manufacture is disclosed. The method may include restricting, by an enclosure, an exchange of gaseous matter between an interior of the enclosure and an exterior of the enclosure. The method may further include running multiple machines within the enclosure. Each of the machines may execute its own process of additive manufacture. While the machines are running, a gas management system may maintain gaseous oxygen within the enclosure at or below a limiting oxygen concentration for the interior.Type: ApplicationFiled: July 17, 2023Publication date: November 9, 2023Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20230356465Abstract: An apparatus and a method for powder bed fusion additive manufacturing involve a multiple-chamber design achieving a high efficiency and throughput. The multiple-chamber design features concurrent printing of one or more print jobs inside one or more build chambers, side removals of printed objects from build chambers allowing quick exchanges of powdered materials, and capabilities of elevated process temperature controls of build chambers and post processing heat treatments of printed objects. The multiple-chamber design also includes a height-adjustable optical assembly in combination with a fixed build platform method suitable for large and heavy printed objects.Type: ApplicationFiled: June 28, 2023Publication date: November 9, 2023Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20230311413Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved structure formation, part creation and manipulation, use of multiple additive manufacturing systems, and high throughput manufacturing methods suitable for automated or semi-automated factories are also disclosed.Type: ApplicationFiled: May 1, 2023Publication date: October 5, 2023Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11745425Abstract: A method of additive manufacture is disclosed. The method may include restricting, by an enclosure, an exchange of gaseous matter between an interior of the enclosure and an exterior of the enclosure. The method may further include running multiple machines within the enclosure. Each of the machines may execute its own process of additive manufacture. While the machines are running, a gas management system may maintain gaseous oxygen within the enclosure at or below a limiting oxygen concentration for the interior.Type: GrantFiled: October 21, 2020Date of Patent: September 5, 2023Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11724455Abstract: An apparatus and a method for powder bed fusion additive manufacturing involve a multiple-chamber design achieving a high efficiency and throughput. The multiple-chamber design features concurrent printing of one or more print jobs inside one or more build chambers, side removals of printed objects from build chambers allowing quick exchanges of powdered materials, and capabilities of elevated process temperature controls of build chambers and post processing heat treatments of printed objects. The multiple-chamber design also includes a height-adjustable optical assembly in combination with a fixed build platform method suitable for large and heavy printed objects. A side removal mechanism of the build chambers of the apparatus improves handling and efficiency for printing large and heavy objects. Use of a wide range of sensors in the apparatus and by the method allows various feedback to improve quality, manufacturing throughput, and energy efficiency.Type: GrantFiled: March 5, 2021Date of Patent: August 15, 2023Assignee: SEURAT TECHNOLOGIES, INC.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11691341Abstract: A manipulator device such as a robot arm that is capable of increasing manufacturing throughput for additively manufactured parts, and allows for the manipulation of parts that would be difficult or impossible for a human to move is described. The manipulator can grasp various permanent or temporary additively manufactured manipulation points on a part to enable repositioning or maneuvering of the part.Type: GrantFiled: October 27, 2016Date of Patent: July 4, 2023Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11666971Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved structure formation, part creation and manipulation, use of multiple additive manufacturing systems, and high throughput manufacturing methods suitable for automated or semi-automated factories are also disclosed.Type: GrantFiled: February 13, 2020Date of Patent: June 6, 2023Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20230158616Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.Type: ApplicationFiled: January 17, 2023Publication date: May 25, 2023Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11656511Abstract: An apparatus with first and second transparent conductive oxide layers is described. A photoconductive layer can be positioned between the first and a second transparent conductive oxide layers. The photoconductive layer can be a crystalline layer that can include bismuth silicate or other suitable materials. An electro-optical layer is positioned in contact with the photoconductive layer. In some embodiments the photoconductive layer is positionable to receive a write beam that defines a two-dimensional spatial pattern.Type: GrantFiled: October 20, 2021Date of Patent: May 23, 2023Assignee: Seurat Technologies, Inc.Inventors: Francis L. Leard, James A. DeMuth, Andrew J. Bayramian, Drew W. Kissinger, Ning Duanmu, Kourosh Kamshad
-
Publication number: 20230079006Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.Type: ApplicationFiled: November 16, 2022Publication date: March 16, 2023Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Publication number: 20230061317Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.Type: ApplicationFiled: November 7, 2022Publication date: March 2, 2023Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11577347Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.Type: GrantFiled: April 12, 2022Date of Patent: February 14, 2023Assignee: Seurat Technologies, Inc.Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
-
Patent number: 11548101Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.Type: GrantFiled: September 24, 2020Date of Patent: January 10, 2023Assignee: Seurat Technologies, Inc.Inventors: James A DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky