Patents by Inventor Kristin Kemmerich

Kristin Kemmerich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10906973
    Abstract: The present invention relates, in general, to polypeptides capable of transmigrating the blood-brain barrier, and uses thereof. More specifically, the present invention relates to polypeptides derived by site-directed mutagenesis of an existing antibody fragment and uses thereof, and methods of making such molecules. The polypeptides of the present invention show enhanced blood-brain barrier crossing and brain exposure levels in vitro and in vivo.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 2, 2021
    Assignees: National Research Council of Canada, Cephalon, Inc.
    Inventors: Danica Stanimirovic, Traian Sulea, Kristin Kemmerich, David Wilson, Jennifer Stratton, Matthew Pollard, Adam Clarke
  • Patent number: 10738115
    Abstract: The present invention relates to antibodies and fragments thereof derived by humanization of an existing antibody, and methods of making them. The humanized antibodies of the present invention show enhanced binding to the brain endothelial antigen, improved transmigration across the blood-brain barrier, and increased thermal stability relative to the parent non-humanized antibody.
    Type: Grant
    Filed: July 4, 2017
    Date of Patent: August 11, 2020
    Assignee: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Yves Durocher, Traian Sulea
  • Publication number: 20200095316
    Abstract: The present invention relates, in general, to polypeptides capable of transmigrating the blood-brain barrier, and uses thereof. More specifically, the present invention relates to polypeptides derived by site-directed mutagenesis of an existing antibody fragment and uses thereof, and methods of making such molecules. The polypeptides of the present invention show enhanced blood-brain barrier crossing and brain exposure levels in vitro and in vivo.
    Type: Application
    Filed: December 12, 2017
    Publication date: March 26, 2020
    Applicants: National Research Council of Canada, Cephalon, Inc.
    Inventors: Danica Stanimirovic, Traian Sulea, Kristin Kemmerich, David Wilson, Jennifer Stratton, Matthew Pollard, Adam Clarke
  • Publication number: 20190241653
    Abstract: The present invention relates to antibodies and fragments thereof derived by humanization of an existing antibody, and methods of making them. The humanized antibodies of the present invention show enhanced binding to the brain endothelial antigen, improved transmigration across the blood-brain barrier, and increased thermal stability relative to the parent non-humanized antibody.
    Type: Application
    Filed: July 4, 2017
    Publication date: August 8, 2019
    Applicant: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Yves Durocher, Traian Sulea
  • Patent number: 10112998
    Abstract: The blood-brain barrier (BBB) prevents transport of molecules larger than 500 Dal tons from blood to brain. Receptor-mediated transcytosis (RMT) facilitates transport across the BBB of specific molecules that bind receptors on brain endothelial cells that form the BBB. An insulin-like growth factor 1 receptor (IGF 1R)-binding antibody or fragment thereof is identified that transmigrates the BBB by RMT. The antibody or fragment is used to deliver a cargo molecule across the BBB, wherein the cargo molecule may be a therapeutic or detectable agent. The antibody is a camelid VHH, prepared by immunizing a llama with a 933-amino acid IGF 1R polypeptide. Humanized forms of the camelid VHH are also generated.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: October 30, 2018
    Assignee: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Arsalan S. Haqqani, Traian Sulea, Mehdi Arbabi-Ghahroudi, Bernard Massie, Rénald Gilbert
  • Patent number: 10106614
    Abstract: The blood-brain barrier (BBB) prevents transport of molecules larger than 500 Daltons from blood to brain. Receptor-mediated transcytosis (RMT) facilitates transport across the BBB of specific molecules that bind receptors on brain endothelial cells that form the BBB. An insulin-like growth factor 1 receptor (IGF1R)-binding antibody or fragment thereof is identified that transmigrates the BBB by RMT. The antibody or fragment is used to deliver a cargo molecule across the BBB, wherein the cargo molecule may be a therapeutic or detectable agent. The antibody is a camelid VHH, prepared by immunizing a llama with a 933-amino acid IGF1R polypeptide. Humanized forms of the camelid VHH are also generated.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: October 23, 2018
    Assignee: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Arsalan S. Haqqani, Traian Sulea, Mehdi Arbabi-Ghahroudi, Bernard Massie, Rénald Gilbert
  • Patent number: 10100117
    Abstract: The blood-brain barrier (BBB) prevents transport of molecules larger than 500 Dal tons from blood to brain. Receptor-mediated transcytosis (RMT) facilitates transport across the BBB of specific molecules that bind receptors on brain endothelial cells that form the BBB. An insulin-like growth factor 1 receptor (IGF 1R)-binding antibody or fragment thereof is identified that transmigrates the BBB by RMT. The antibody or fragment is used to deliver a cargo molecule across the BBB, wherein the cargo molecule may be a therapeutic or detectable agent. The antibody is a camelid VHH, prepared by immunizing a llama with a 933-amino acid IGF 1R polypeptide. Humanized forms of the camelid VHH are also generated.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: October 16, 2018
    Assignee: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Arsalan S. Haqqani, Traian Sulea, Mehdi Arbabi-Ghahroudi, Bernard Massie, Rénald Gilbert
  • Publication number: 20170022277
    Abstract: The blood-brain barrier (BBB) prevents transport of molecules larger than 500 Dal tons from blood to brain. Receptor-mediated transcytosis (RMT) facilitates transport across the BBB of specific molecules that bind receptors on brain endothelial cells that form the BBB. An insulin-like growth factor 1 receptor (IGF 1R)-binding antibody or fragment thereof is identified that transmigrates the BBB by RMT. The antibody or fragment is used to deliver a cargo molecule across the BBB, wherein the cargo molecule may be a therapeutic or detectable agent. The antibody is a camelid VHH, prepared by immunizing a llama with a 933-amino acid IGF 1R polypeptide. Humanized forms of the camelid VHH are also generated.
    Type: Application
    Filed: December 4, 2014
    Publication date: January 26, 2017
    Applicant: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Arsalan S. Haqqani, Traian Sulea, Mehdi Arbabi-Ghahroudi, Bernard Massie, Rénald Gilbert
  • Publication number: 20170015749
    Abstract: The blood-brain barrier (BBB) prevents transport of molecules larger than 500 Daltons from blood to brain. Receptor-mediated transcytosis (RMT) facilitates transport across the BBB of specific molecules that bind receptors on brain endothelial cells that form the BBB. An insulin-like growth factor 1 receptor (IGF1R)-binding antibody or fragment thereof is identified that transmigrates the BBB by RMT. The antibody or fragment is used to deliver a cargo molecule across the BBB, wherein the cargo molecule may be a therapeutic or detectable agent. The antibody is a camelid VHH, prepared by immunizing a llama with a 933-amino acid IGF1R polypeptide. Humanized forms of the camelid VHH are also generated.
    Type: Application
    Filed: December 4, 2014
    Publication date: January 19, 2017
    Applicant: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Arsalan S. Haqqani, Traian Sulea, Mehdi Arbabi-Ghahroudi, Bernard Massie, Rénald Gilbert
  • Publication number: 20170015748
    Abstract: The blood-brain barrier (BBB) prevents transport of molecules larger than 500 Dal tons from blood to brain. Receptor-mediated transcytosis (RMT) facilitates transport across the BBB of specific molecules that bind receptors on brain endothelial cells that form the BBB. An insulin-like growth factor 1 receptor (IGF 1R)-binding antibody or fragment thereof is identified that transmigrates the BBB by RMT. The antibody or fragment is used to deliver a cargo molecule across the BBB, wherein the cargo molecule may be a therapeutic or detectable agent. The antibody is a camelid VHH, prepared by immunizing a llama with a 933-amino acid IGF 1R polypeptide. Humanized forms of the camelid VHH are also generated.
    Type: Application
    Filed: December 4, 2014
    Publication date: January 19, 2017
    Applicant: National Research Council of Canada
    Inventors: Danica Stanimirovic, Kristin Kemmerich, Arsalan S. Haqqani, Traian Sulea, Mehdi Arbabi-Ghahroudi, Bernard Massie, Rénald Gilbert