Patents by Inventor Kuan-Chieh Huang

Kuan-Chieh Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9859459
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 2, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Patent number: 9831399
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: November 28, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20170323870
    Abstract: A light-emitting device including a light-emitting unit, a packaging sealant, a transparent layer, and a reflective structure is provided. The light-emitting unit has at least one epitaxial layer and two electrodes correspondingly formed on the epitaxial layer. The epitaxial layer has a top surface, a bottom surface on which the two electrodes are exposed, and a side surface connecting the bottom surface and the top surface. The packaging sealant is formed on the top surface and the side surface of the epitaxial layer. The transparent layer is disposed on the packaging sealant and located above the top surface of the epitaxial layer. The reflective structure is disposed surrounding the side surface of the epitaxial layer and formed on the packaging sealant. A manufacturing method of the above light-emitting device is further provided.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20170309787
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting
  • Patent number: 9705045
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 11, 2017
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20170194102
    Abstract: A solar cell module with a perovskite layer is revealed. The solar cell module includes a transparent substrate with a light incident surface and a surface opposite to the light incident surface. A plurality of solar cell units is disposed on the surface and each solar cell includes a transparent conductive layer, a first carrier transport layer, a perovskite layer and a second carrier transport layer. An insulation layer is not only located between the adjacent solar cell units but also covered over the solar cell units. A plurality of conductors is used for electrical connection of the plurality of solar cell units in series. Thus the solar cell module has better open circuit voltage and higher stability owing to connection way of the solar cell units in series and the insulation layer.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 6, 2017
    Inventors: KUAN-CHIEH HUANG, LI-CHUNG LAI
  • Publication number: 20170186732
    Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 29, 2017
    Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang
  • Publication number: 20170125645
    Abstract: A light emitting device includes a light emitting unit, a light transmissive layer and an encapsulant. The light emitting unit includes a substrate, an epitaxial structure layer disposed on the substrate, and a first electrode and a second electrode disposed on the same side of the epitaxial structure layer, respectively. The light emitting unit is disposed on the light transmissive layer and at least a part of the first electrode and a part of the second electrode are exposed by the light transmissive layer. The encapsulant encapsulates the light emitting unit and at least exposes a part of the first electrode and a part of the second electrode. Each of the first electrode and the second electrode extends outward from the epitaxial structure layer, and covers at least a part of an upper surface of the encapsulant, respectively.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 4, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yu-Feng Lin, Yi-Ru Huang
  • Patent number: 9570431
    Abstract: An embodiment semiconductor wafer includes a bottom semiconductor layer having a first doping concentration, a middle semiconductor layer over the bottom semiconductor layer, and a top semiconductor layer over the middle semiconductor layer. The middle semiconductor layer has a second doping concentration greater than the first doping concentration, and the top semiconductor layer has a third doping concentration less than the second doping concentration. A lateral surface of the bottom semiconductor layer is an external surface of the semiconductor wafer, and sidewalls of the bottom semiconductor layer, the middle semiconductor layer, and top semiconductor layer are substantially aligned.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: February 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Te Lee, Chung-Yi Yu, Jen-Cheng Liu, Kuan-Chieh Huang, Yeur-Luen Tu
  • Publication number: 20170033093
    Abstract: An embodiment semiconductor wafer includes a bottom semiconductor layer having a first doping concentration, a middle semiconductor layer over the bottom semiconductor layer, and a top semiconductor layer over the middle semiconductor layer. The middle semiconductor layer has a second doping concentration greater than the first doping concentration, and the top semiconductor layer has a third doping concentration less than the second doping concentration. A lateral surface of the bottom semiconductor layer is an external surface of the semiconductor wafer, and sidewalls of the bottom semiconductor layer, the middle semiconductor layer, and top semiconductor layer are substantially aligned.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Cheng-Te Lee, Chung-Yi Yu, Jen-Cheng Liu, Kuan-Chieh Huang, Yeur-Luen Tu
  • Patent number: 9501289
    Abstract: A computer system includes a memory storing an UEFI firmware and a processor. The UEFI firmware supports pre-boot initialization of a plurality of different bootloader programs, wherein the UEFI firmware has a plurality of instructions and a plurality of configuration data for different bootloader programs.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: November 22, 2016
    Assignee: AMERICAN MEGATRENDS INC.
    Inventors: Hsin-Hung Chen, Tung-Han Hsieh, Kuan-Chieh Huang, Ho-Sui Su
  • Publication number: 20160329461
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: April 22, 2016
    Publication date: November 10, 2016
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20160307880
    Abstract: A light-emitting device and a light-emitting module using the same are provided. The light-emitting device includes a substrate module and a light-emitting component. The substrate module includes a substrate, a first conductive layer, an insulation layer and a second conductive layer. The substrate has an upper surface. The insulation layer is formed on the upper surface of the substrate, separates the substrate and the first conductive layer and has an opening. The second conductive layer connects to the upper surface of the substrate and is separated from the first conductive layer. The light-emitting component is disposed on the substrate module and electrically connected to the first conductive layer and the second conductive layer.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Inventors: Yi-Ru Huang, Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20160276554
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Application
    Filed: May 30, 2016
    Publication date: September 22, 2016
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20160254428
    Abstract: A light emitting device including a circuit board, a light emitting unit, and an anisotropic conductive layer is provided. The circuit board includes a plurality of electrode pads. The light emitting unit includes a semiconductor epitaxial structure layer, a first electrode, and a second electrode. The first electrode and the second electrode are respectively disposed on the same side of the semiconductor epitaxial structure layer. The first electrode and the second electrode are electrically connected to the electrode pads through the anisotropic conductive layer. A fabricating method of a light emitting device is also provided.
    Type: Application
    Filed: February 17, 2016
    Publication date: September 1, 2016
    Inventors: Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang, Kuan-Chieh Huang
  • Publication number: 20160247788
    Abstract: The disclosure relates to a high-voltage light-emitting diode (HV LED) and a manufacturing method thereof. A plurality of LED dies connected in series, in parallel, or in series and parallel are formed on a substrate. A side surface of the first semiconductor layer of part of the LED dies is aligned with a side surface of the substrate, such that no space for exposing the substrate is reserved between the LED dies and the edges of the substrate, the ratio of the substrate being covered by the LED dies is increased, that is, light-emitting area per unit area is increased, and the efficiency of light extraction of HV LED is improved.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 25, 2016
    Inventors: Tsung-Syun Huang, Chih-Chung Kuo, Yi-Ru Huang, Chih-Ming Shen, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20160247974
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 25, 2016
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20160240751
    Abstract: A light-emitting device including a light-emitting unit, a packaging sealant, a transparent layer, and a reflective structure is provided. The light-emitting unit has at least one epitaxial layer and two electrodes correspondingly formed on the epitaxial layer. The epitaxial layer has a top surface, a bottom surface on which the two electrodes are exposed, and a side surface connecting the bottom surface and the top surface. The packaging sealant is formed on the top surface and the side surface of the epitaxial layer. The transparent layer is disposed on the packaging sealant and located above the top surface of the epitaxial layer. The reflective structure is disposed surrounding the side surface of the epitaxial layer and formed on the packaging sealant. A manufacturing method of the above light-emitting device is further provided.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 18, 2016
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20160240732
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 18, 2016
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20160240744
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 18, 2016
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting