Patents by Inventor Kunihiko Nakayama

Kunihiko Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9927536
    Abstract: A radiation detection apparatus includes a selecting unit that allows a light having a light emission wavelength and a polarization direction to pass thorough the selecting unit, an optical system that forms an image of the light, a photon detecting unit that observes the image formed by the optical system, and detects the photon in whole range of the entire image, a counting unit that calculates the number of the alpha rays based on a result of counting the photons derived from the light emission of gas excited by the alpha rays, whereby it is possible to sufficiently eliminate background light (noise light) even if background light is strong, and therefore observe weak light emission.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 27, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hidehiko Kuroda, Kunihiko Nakayama, Kei Takakura, Mikio Izumi, Naoto Kume
  • Patent number: 9899681
    Abstract: Provided is a secondary battery positive electrode that can improve the rapid charge and discharge and can increase the heat resistance. Also provided are a secondary battery comprising the secondary battery positive electrode, and a method for producing the secondary battery positive electrode. The secondary battery positive electrode comprises an aluminum material, a positive active material layer comprising a lithium-containing metal oxide as a positive active material, and formed on the surface of the aluminum material, and an intervening layer comprising aluminum and carbon, and formed between the aluminum material and the positive active material layer.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 20, 2018
    Assignee: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Yui Morishima, Hidetoshi Inoue, Kunihiko Nakayama
  • Patent number: 9608275
    Abstract: Provided are an electrically conductive layer coated aluminum material having properties which can withstand long term use; and a method for manufacturing the electrically conductive layer coated aluminum material. The electrically conductive layer coated aluminum material includes: an aluminum material (1); a first electrically conductive layer (2); an interposing layer (3); and a second electrically conductive layer (4). The first electrically conductive layer (2) is formed on a surface of the aluminum material (1) and includes an organic substance having electrical conductivity. The interposing layer (3) is formed between the aluminum material (1) and the first electrically conductive layer (2) and includes a carbide of aluminum. The second electrically conductive layer (4) is formed on a surface of the first electrically conductive layer (2) and includes carbon-containing particles (41).
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 28, 2017
    Assignee: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Hidetoshi Inoue, Kunihiko Nakayama, Zenya Ashitaka
  • Patent number: 9523776
    Abstract: An embodiment of a radiation detector has: a light collecting member; a photo detector that can receive light collected by the light collecting member and count number of photons; a wavelength selector that can selectively transmit light based on the light emission of gas caused by alpha rays by selectively transmitting light of a wavelength in a specific range; a shielding device that is can switch between an opened state in which it transmits light and a closed state in which it shields light; and a counting unit that calculates an alpha dose based on a difference calculated by subtracting number of noise photons detected in the photo detector within a predetermined time period when the shielding device is in the closed state from the number of photons received by the photo detector within the predetermined time period when the shielding device is opened state.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: December 20, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hidehiko Kuroda, Kunihiko Nakayama, Kei Takakura, Mikio Izumi
  • Patent number: 9279889
    Abstract: A light detecting unit of an alpha ray observation device observes an alpha ray by measuring generated light that is generated by the alpha ray produced in a region of a to-be-measured object. The light detecting unit has a travel direction changing unit that changes the direction of travel of generated light, a light detector that detects direction-changed light, which is the generated light after the direction of travel is changed, and a shielding member that shields the light detector from radiation and has a portion that is provided on the line from the to-be-measured object to the light detector. The shielding member may also surround the perimeter of the light detector and have an opening to allow generated light to reach the travel direction changing unit.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: March 8, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoto Kume, Hidehiko Kuroda, Kunihiko Nakayama, Kei Takakura
  • Publication number: 20150369932
    Abstract: An alpha ray observation apparatus, according to an embodiment, that observes alpha rays by detecting alpha ray caused light generated from an alpha ray source in a to-be-observed object, including: an alpha ray caused light wavelength selecting unit that can select light including wavelength of the alpha ray caused light; an alpha ray caused light detecting unit that measures an amount of alpha ray caused light; a short-side wavelength selecting unit that can select light of a short-side wavelength that is shorter than the wavelength of the alpha ray caused light; a short-side wavelength light detecting unit; a long-side wavelength selecting unit that can select light of a long-side wavelength that longer than the wavelength of the alpha ray caused light; a long-side wavelength light detecting unit; and a correction unit that calculates a corrected light amount by correcting the amount of the alpha ray caused light.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 24, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Naoto KUME, Hidehiko KURODA, Kunihiko NAKAYAMA, Kei TAKAKURA
  • Publication number: 20150364765
    Abstract: Provided is a secondary battery positive electrode that can improve the rapid charge and discharge and can increase the heat resistance. Also provided are a secondary battery comprising the secondary battery positive electrode, and a method for producing the secondary battery positive electrode. The secondary battery positive electrode comprises an aluminum material, a positive active material layer comprising a lithium-containing metal oxide as a positive active material, and formed on the surface of the aluminum material, and an intervening layer comprising aluminum and carbon, and formed between the aluminum material and the positive active material layer.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 17, 2015
    Applicant: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Yui Morishima, Hidetoshi Inoue, Kunihiko Nakayama
  • Publication number: 20150323678
    Abstract: An embodiment of a radiation detector has: a light collecting member; a photo detector that can receive light collected by the light collecting member and count number of photons; a wavelength selector that can selectively transmit light based on the light emission of gas caused by alpha rays by selectively transmitting light of a wavelength in a specific range; a shielding device that is can switch between an opened state in which it transmits light and a closed state in which it shields light; and a counting unit that calculates an alpha dose based on a difference calculated by subtracting number of noise photons detected in the photo detector within a predetermined time period when the shielding device is in the closed state from the number of photons received by the photo detector within the predetermined time period when the shielding device is opened state.
    Type: Application
    Filed: September 2, 2014
    Publication date: November 12, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hidehiko KURODA, Kunihiko Nakayama, Kei Takakura, Mikio Izumi
  • Publication number: 20150323681
    Abstract: A light detecting unit of an alpha ray observation device observes an alpha ray by measuring generated light that is generated by the alpha ray produced in a region of a to-be-measured object. The light detecting unit has a travel direction changing unit that changes the direction of travel of generated light, a light detector that detects direction-changed light, which is the generated light after the direction of travel is changed, and a shielding member that shields the light detector from radiation and has a portion that is provided on the line from the to-be-measured object to the light detector. The shielding member may also surround the perimeter of the light detector and have an opening to allow generated light to reach the travel direction changing unit.
    Type: Application
    Filed: January 30, 2014
    Publication date: November 12, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Naoto KUME, Hidehiko KURODA, Kunihiko NAKAYAMA, Kei TAKAKURA
  • Publication number: 20150090889
    Abstract: A radiation detection apparatus includes a selecting unit that allows a light having a light emission wavelength and a polarization direction to pass thorough the selecting unit, an optical system that forms an image of the light, a photon detecting unit that observes the image formed by the optical system, and detects the photon in whole range of the image, a counting unit that calculates the number of the alpha ray based on a result of counting the photon derived from the light emission of gas excited by the alpha ray, and is possible to sufficiently eliminate background light (noise light) even if background light is strong, and therefore observe weak light emission.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 2, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hidehiko KURODA, Kunihiko NAKAYAMA, Kei TAKAKURA, Mikio IZUMI, Naoto KUME
  • Patent number: 8976509
    Abstract: An aluminum material, a dielectric layer and an interposing layer formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and includes aluminum and carbon, wherein the dielectric layer includes dielectric particles including a valve metal, and an organic substance layer formed on at least one part of a surface of the dielectric particle.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 10, 2015
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue
  • Publication number: 20140315013
    Abstract: An aluminum material, a dielectric layer and an interposing layer formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and includes aluminum and carbon, wherein the dielectric layer includes dielectric particles including a valve metal, and an organic substance layer formed on at least one part of a surface of the dielectric particle.
    Type: Application
    Filed: January 27, 2014
    Publication date: October 23, 2014
    Applicant: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko NAKAYAMA, Zenya ASHITAKA, Hidetoshi INOUE
  • Patent number: 8638545
    Abstract: An electrode structure which provides adhesiveness between an aluminum material, as a base material, and a dielectric layer, and adhesiveness between the dielectric layers, and enables a high capacitance, even with a thick dielectric layer. An interposing layer is formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and includes aluminum and carbon. The dielectric layer includes dielectric particles including valve metal, and an organic substance layer formed on at least one part of a surface of the dielectric particle. A mixture layer of dielectric particles, including the valve metal and a binder, is formed on a surface of the aluminum material, and thereafter, the aluminum material is heated in a state where the aluminum material is placed in a space including a hydrocarbon-containing substance.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: January 28, 2014
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hietoshi Inoue
  • Publication number: 20130157131
    Abstract: Provided are an electrically conductive layer coated aluminum material having properties which can withstand long term use; and a method for manufacturing the electrically conductive layer coated aluminum material. The electrically conductive layer coated aluminum material includes: an aluminum material (1); a first electrically conductive layer (2); an interposing layer (3); and a second electrically conductive layer (4). The first electrically conductive layer (2) is formed on a surface of the aluminum material (1) and includes an organic substance having electrical conductivity. The interposing layer (3) is formed between the aluminum material (1) and the first electrically conductive layer (2) and includes a carbide of aluminum. The second electrically conductive layer (4) is formed on a surface of the first electrically conductive layer (2) and includes carbon-containing particles (41).
    Type: Application
    Filed: August 12, 2011
    Publication date: June 20, 2013
    Applicant: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Hidetoshi Inoue, Kunihiko Nakayama, Zenya Ashitaka
  • Patent number: 8385051
    Abstract: Provided are an electrode structure which is excellent in adhesiveness between an aluminum material as a base material and a dielectric layer and adhesiveness between the dielectric layers and allows a higher capacitance than the conventional one to be obtained, even when a thickness of the dielectric layer is thick; a method for manufacturing the above-mentioned electrode structure; and a capacitor and a battery, each of which includes the above-mentioned electrode structure. An electrode structure comprises: an aluminum material; a dielectric layer formed on a surface of the aluminum material; and an interposing layer formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and including aluminum and carbon, the dielectric layer includes dielectric particles including valve metal, and an organic substance layer is formed on at least one part of a surface of the dielectric particle.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: February 26, 2013
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue
  • Publication number: 20120261162
    Abstract: Provided are an electrode structure capable of suppressing a leakage current, having a high capacitance, allowing an electrical short circuit caused through contact with an electrolyte to be suppressed, and operable to be applied as an anode of a capacitor; a method for manufacturing the electrode structure; and a capacitor including the electrode structure. The method for manufacturing the electrode structure includes: a covering layer formation step of forming on a surface of an aluminum material a covering layer of a dielectric precursor including valve metal; and a reduction heating step of heating in a reducing atmosphere including no carbon the aluminum material having the covering layer formed thereon.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 18, 2012
    Applicant: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue, Miho Suzuki
  • Publication number: 20120003544
    Abstract: Provided are an electrode structure which is excellent in adhesiveness between an aluminum material as a base material and a dielectric layer and adhesiveness between the dielectric layers and allows a higher capacitance than the conventional one to be obtained, even when a thickness of the dielectric layer is thick; a method for manufacturing the above-mentioned electrode structure; and a capacitor and a battery, each of which includes the above-mentioned electrode structure. An electrode structure comprises: an aluminum material; a dielectric layer formed on a surface of the aluminum material; and an interposing layer formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and including aluminum and carbon, the dielectric layer includes dielectric particles including valve metal, and an organic substance layer is formed on at least one part of a surface of the dielectric particle.
    Type: Application
    Filed: March 4, 2010
    Publication date: January 5, 2012
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue
  • Publication number: 20110318550
    Abstract: Provided are an electrically conductive substance coated aluminum material in which an electrically conductive substance ensuring electrical conductivity of a surface is not exfoliated from an aluminum material due to moisture even in a case where the electrically conductive substance coated aluminum material is used under a high humidity condition and which can be favorably used as a material for a current collector and an electrode; and a method for manufacturing the electrically conductive substance coated aluminum material.
    Type: Application
    Filed: March 4, 2010
    Publication date: December 29, 2011
    Applicant: TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Hidetoshi Inoue, Kunihiko Nakayama, Zenya Ashitaka
  • Publication number: 20110027537
    Abstract: Provided are a carbon-coated aluminum material capable of improving properties of adhesion between a carbon-containing layer and an aluminum material and properties of mutual adhesion among carbon-containing particles included in the carbon-containing layer; and a method for manufacturing the carbon-coated aluminum material. The carbon-coated aluminum material comprises: aluminum foil (1); a carbon-containing layer (2) formed on a surface of the aluminum foil (1); and an interposing layer(s) (3) formed between the aluminum foil (1) and the carbon-containing layer (2) and on at least one region of the surface of the aluminum foil (1), the interposing layer (3) including a carbide of aluminum. The carbon-containing layer (2) includes a plurality of the carbon-containing particles (22) and an organic layer (23) is formed on a surface of each of the carbon-containing particles (22).
    Type: Application
    Filed: January 28, 2009
    Publication date: February 3, 2011
    Inventors: Hidetoshi Inoue, Kunihiko Nakayama, Zenya Ashitaka
  • Publication number: 20090032718
    Abstract: A color scintillator 26 comprises: an optical substrate having bundled optical fibers; an acicular scintillator 50 provided with the optical substrate 30, the acicular scintillator having either of an acicular crystal structure and a columnar crystal structure, the acicular scintillator reacting with at least one of an electromagnetic wave and a radial ray into light emitting; and a coating scintillator 51 coating the acicular scintillator 50, the coating scintillator reacting with at least one of another electromagnetic wave and another radial ray which differ in either of an energy and a type from the electromagnetic wave and the radial ray reacting with the acicular scintillator 50 into light emitting in a different color from an emitting color in the acicular scintillator 50.
    Type: Application
    Filed: September 24, 2008
    Publication date: February 5, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koichi NITTOH, Kunihiko Nakayama, Keisuke Kitsukawa, Motohisa Abe, Takashi Noji