Patents by Inventor Kunio Iritani

Kunio Iritani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030143090
    Abstract: In an electrical compressor having a motor and an electrical circuit integrated with a compression portion, a part of electrical components of the electrical circuit is disposed in spaces between a cylindrical outer surface of a motor housing and an imaginary flat surface that imaginarily contacts the cylindrical outer surface. Therefore, the spaces can be used effectively, and the electrical compressor can be downsized. Further, the part of the electrical components can be effectively cooled by refrigerant in the motor housing. On the other hand, the outer surface of the motor housing is used as one surface defining an inner space of a casing for accommodating the electrical circuit. In this case, the electrical circuit can be effectively cooled by refrigerant in the motor housing.
    Type: Application
    Filed: January 27, 2003
    Publication date: July 31, 2003
    Inventors: Kunio Iritani, Hiroyuki Kawata, Kenji Funahashi, Yuji Takeo, Yusuke Shindo, Tsuyoshi Takemoto
  • Patent number: 6574987
    Abstract: In an ejector cycle system using carbon dioxide as refrigerant, an ejector decompresses and expands refrigerant from a radiator to suck gas refrigerant evaporated in an evaporator, and converts an expansion energy to a pressure energy to increase a refrigerant pressure to be sucked into a compressor. Because refrigerant is decompressed and expanded in a super-critical area, a pressure difference during the decompression operation becomes larger, and a specific enthalpy difference becomes larger. Accordingly, energy converting efficiency in the ejector becomes higher, and efficiency of the ejector cycle system is improved.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: June 10, 2003
    Assignee: DENSO Corporation
    Inventors: Hirotsugu Takeuchi, Hiroshi Ishikawa, Kunio Iritani
  • Publication number: 20030037562
    Abstract: In a vehicle air conditioner for heating a passenger compartment by a heater core and a heat pump cycle, when operation of a heat pump cycle is switched from a defrosting operation to a heating assist operation, a heating degree of the heater core is increased higher than a predetermined heating degree. Further, when the operation of the heat pump cycle is switched from the defrosting operation to the heating assist operation, an air outlet mode except for a defrosting mode for defrosting a windshield is set. Further, in the defrosting operation of the heat pump cycle, the temperature of an interior heat exchanger of the heat pump cycle is set higher.
    Type: Application
    Filed: August 27, 2002
    Publication date: February 27, 2003
    Inventors: Keita Honda, Kunio Iritani
  • Patent number: 6515448
    Abstract: In an air conditioner for a hybrid vehicle, when a residual charging degree of a battery becomes equal to or lower than a target degree, the electrical motor generator is driven by a vehicle engine so that the battery is charged through the electrical motor generator. When the engine is driven, the target degree of the battery is set higher than that when the engine is stopped so that a charging operation tends to be required while the engines driven. Accordingly, the frequency for starting the engine only for charging the battery is reduced.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: February 4, 2003
    Assignee: Denso Corporation
    Inventors: Kunio Iritani, Keita Honda, Hisashi Ieda, Ken Matsunaga, Toshinobu Homan, Mitsuyo Oomura, Yuji Takeo
  • Publication number: 20020184903
    Abstract: In an ejector cycle system using carbon dioxide as refrigerant, an ejector decompresses and expands refrigerant from a radiator to suck gas refrigerant evaporated in an evaporator, and converts an expansion energy to a pressure energy to increase a refrigerant pressure to be sucked into a compressor. Because refrigerant is decompressed and expanded in a super-critical area, a pressure difference during the decompression operation becomes larger, and a specific enthalpy difference becomes larger. Accordingly, energy converting efficiency in the ejector becomes higher, and efficiency of the ejector cycle system is improved.
    Type: Application
    Filed: July 23, 2002
    Publication date: December 12, 2002
    Inventors: Hirotsugu Takeuchi, Hiroshi Ishikawa, Kunio Iritani
  • Patent number: 6477857
    Abstract: In an ejector cycle system using carbon dioxide as refrigerant, an ejector decompresses and expands refrigerant from a radiator to suck gas refrigerant evaporated in an evaporator, and converts an expansion energy to a pressure energy to increase a refrigerant pressure to be sucked into a compressor. Because refrigerant is decompressed and expanded in a super-critical area, a pressure difference during the decompression operation becomes larger, and a specific enthalpy difference becomes larger. Accordingly, energy converting efficiency in the ejector becomes higher, and efficiency of the ejector cycle system is improved.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: November 12, 2002
    Assignee: Denso Corporation
    Inventors: Hirotsugu Takeuchi, Kazuhisa Makida, Yoshitaka Kume, Hiroshi Ishikawa, Kunio Iritani, Satoshi Nomura, Hisayoshi Sakakibara, Makoto Ikegami
  • Patent number: 6430951
    Abstract: The evaporator and the condenser are disposed in a duct. First bypass passage is disposed at the side of the condenser and first air mixing damper rotates to control air bypassing amount. Further second bypass passage is formed at the side of the evaporator and second mixing damper rotates to control air bypassing amount. Cooling rate at the evaporator and heating rate at the condenser are varied so that air adjusted in proper temperature is generated and discharged from each outlets into a room. An outside heat exchanger is disposed the outside of the duct. Refrigerant flow is randomly switched among the outside heat exchanger, the evaporator and the condenser so that cooling, heating, dehumidifying, dehumidified-heating and defrosting operations are performed.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: August 13, 2002
    Assignee: Denso Corporation
    Inventors: Kunio Iritani, Shigeo Numazawa, Kenichi Fujiwara, Yasushi Yamanaka, Akira Isaji, Nobunao Suzuki
  • Publication number: 20020084769
    Abstract: In an air conditioner for a hybrid vehicle, when a residual charging degree of a battery becomes equal to or lower than a target degree, the electrical motor generator is driven by a vehicle engine so that the battery is charged through the electrical motor generator. When the engine is driven, the target degree of the battery is set higher than that when the engine is stopped so that a charging operation tends to be required while the engine is driven. Accordingly, the frequency for starting the engine only for charging the battery is reduced.
    Type: Application
    Filed: December 27, 2001
    Publication date: July 4, 2002
    Inventors: Kunio Iritani, Keita Honda, Hisashi Ieda, Ken Matsunaga, Toshinobu Homan, Mitsuyo Oomura, Yuji Takeo
  • Publication number: 20020036080
    Abstract: In a vehicle air conditioner with a heat pump cycle having an interior heat exchanger and an exterior heat exchanger, when a frosting on a surface of the exterior heat exchanger is determined and when a temperature of hot water supplied to a heater core is equal to or higher than a predetermined temperature, the exterior heat exchanger is defrosted in a defrosting operation. Accordingly, the defrosting operation can be performed while a sufficient heating can be obtained.
    Type: Application
    Filed: September 20, 2001
    Publication date: March 28, 2002
    Inventors: Satoshi Itoh, Motohiro Yamaguchi, Yoshitaka Tomatsu, Toshio Hirata, Yasushi Yamanaka, Keita Honda, Kunio Iritani
  • Patent number: 6352247
    Abstract: An electric compressor having a compression unit and an electric motor is mounted to a vehicle through a first support member supporting the compression unit and a second support member supporting the motor. A spring constant of the first support member is smaller than that of the second support member. Therefore, vibration of the compression unit is absorbed by the first support member, and is restricted from being transmitted to the vehicle. On the other hand, vibration of the vehicle is absorbed by the second support member, and is restricted from being transmitted to the compressor. As a result, inlet and outlet pipes connected to the compressor are insulated from a large amount of stress and therefore are not broken due to fatigue at an early stage.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: March 5, 2002
    Assignee: Denso Corporation
    Inventors: Hiroshi Ishikawa, Kunio Iritani, Katsuya Kusano, Masaya Tanaka
  • Patent number: 6347528
    Abstract: A gas-injection type refrigeration-cycle device has heat exchanger where refrigerant extracts waste heat from heating devices. In the refrigeration-cycle device, the mode is changed between where lower-pressure refrigerant extracts heat and where intermediate-pressure refrigerant extracts the heat of the hot water. The lower-pressure refrigerant is drawn into compressor, after heat exchanger is set at the lower-pressure side of the refrigeration cycle. The intermediate-pressure refrigerant is introduced into compressor-gas-injection port, after heat exchanger is set at the intermediate-pressure side of the refrigeration cycle. In another aspect, a defrosting mode of outdoor heat exchanger includes a heating mode, and gas refrigerant discharged from compressor flows through condenser without heat exchange. Thereafter, the flow of the gas refrigerant is divided to two portions, and the gas refrigerant of one portion flows into outdoor heat exchanger, thereby defrosting outdoor heat exchanger.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: February 19, 2002
    Assignee: Denso Corporation
    Inventors: Kunio Iritani, Satoshi Itoh, Hiroshi Ishikawa, Takayuki Hirose
  • Patent number: 6314750
    Abstract: A heat pump air conditioner has a heat exchanger, a separator for separating refrigerant discharged from the heat exchanger into gas refrigerant and liquid refrigerant, and a compressor. Gas refrigerant in the separator is sucked into the compressor through a gas suction pipe. Oil-dissolved liquid refrigerant in the separator is also sucked through an oil return hole formed at a bottom of the gas suction pipe into the compressor. At the time of starting the air conditioner, when it is judged that a surface of liquid refrigerant in the separator is rapidly lowered to the oil return hole, a rotational speed of the compressor is controlled so that an amount of refrigerant discharged from the compressor is decreased. As a result, the surface of liquid refrigerant is kept higher than the oil return hole, and oil shortage of the compressor is restricted.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: November 13, 2001
    Assignee: Denso Corporation
    Inventors: Hiroshi Ishikawa, Katsuya Kusano, Kunio Iritani, Masaya Tanaka, Keita Honda
  • Publication number: 20010025499
    Abstract: In an ejector cycle system using carbon dioxide as refrigerant, an ejector decompresses and expands refrigerant from a radiator to suck gas refrigerant evaporated in an evaporator, and converts an expansion energy to a pressure energy to increase a refrigerant pressure to be sucked into a compressor. Because refrigerant is decompressed and expanded in a super-critical area, a pressure difference during the decompression operation becomes larger, and a specific enthalpy difference becomes larger. Accordingly, energy converting efficiency in the ejector becomes higher, and efficiency of the ejector cycle system is improved.
    Type: Application
    Filed: March 13, 2001
    Publication date: October 4, 2001
    Inventors: Hirotsugu Takeuchi, Kazuhisa Makida, Yoshitaka Kume, Hiroshi Ishikawa, Kunio Iritani, Satoshi Nomura, Hisayoshi Sakakibara, Makoto Ikegami
  • Patent number: 6293123
    Abstract: During a heating mode, higher-pressure refrigerant having passed through a condenser within an air-conditioning duct is divided into two portions. One portion is depressurized by a first depressurizing device to an intermediate pressure. Heat exchange is performed in a refrigerant-refrigerant heat exchanger between the other portion of the higher-pressure refrigerant having just passed through the condenser and the intermediate-pressure refrigerant having just passed through the first depressurizing device. During the heating mode, the higher-pressure refrigerant cooled in refrigerant-refrigerant heat exchanger 23 is supercooled by a supercooling device within the air-conditioning duct. Then, the supercooled higher-pressure refrigerant is depressurized by a second depressurizing device to a lower pressure, thereby vaporized in an outdoor heat-exchanger.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: September 25, 2001
    Assignee: Denso Corporation
    Inventors: Kunio Iritani, Satoshi Itoh
  • Patent number: 6237351
    Abstract: When a heating mode is set in a refrigerant cycle system, air is heated in a condenser by condensing high-pressure gas refrigerant, a part of high-pressure refrigerant from the condenser is decompressed in a pressure reducing unit to a middle pressure, and the other part of high-pressure refrigerant from the condenser is heat-exchanged with the middle-pressure refrigerant having passed through the pressure reducing unit in a refrigerant-refrigerant heat exchanger. Therefore, middle-pressure refrigerant having passed through the pressure reducing unit is evaporated in the refrigerant-refrigerant heat exchanger and the evaporated middle-pressure refrigerant is introduced into a gas injection port of a compressor. Thus, in the refrigerant cycle system, heating capacity can be improved due to the gas refrigerant injection into the compressor.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: May 29, 2001
    Assignee: Denso Corporation
    Inventors: Satoshi Itoh, Kunio Iritani
  • Patent number: 6212900
    Abstract: The evaporator and the condenser are disposed in a duct. First bypass passage is disposed at the side of the condenser and first air mixing damper rotates to control air bypassing amount. Further second bypass passage is formed at the side of the evaporator and second mixing damper rotates to control air bypassing amount. Cooling rate at the evaporator and heating rate at the condenser are varied so that air adjusted in proper temperature is generated and discharged from each outlets into a room. An outside heat exchanger is disposed the outside of the duct. Refrigerant flow is randomly switched among the outside heat exchanger, the evaporator and the condenser so that cooling, heating, dehumidifying, dehumidified-heating and defrosting operations are performed.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: April 10, 2001
    Assignee: Nippendenso Co., Ltd.
    Inventors: Kunio Iritani, Shigeo Numazawa, Kenichi Fujiwara, Yasushi Yamanaka, Akira Isaji, Nobunao Suzuki
  • Patent number: 6178760
    Abstract: An air conditioner system for vehicles has an exterior heat exchanger, which is used as an evaporator at the time of heating operation. A control unit monitors the heating operation and stores a defrost flag when the heating operation continues for a predetermined time period, e.g., 20 minutes, under a low exterior air temperature below a predetermined temperature, e.g., 5° C. When an electric vehicle is at rest after the heating operation to charge its secondary battery with an electric power from an external power source, the control unit first starts a defrosting operation and starts a charging operation of the secondary battery after the completion of the defrosting operation.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: January 30, 2001
    Assignee: Denso Corporation
    Inventors: Masaya Tanaka, Kunio Iritani
  • Patent number: 6073459
    Abstract: In order to suppress the deterioration of the efficiency of the refrigeration cycle when the theoretical supercooling degree is different from the actual supercooling degree due to an error of a sensor, upon a decision that an expansion valve opening degree remains unchanged after the lapse of a predetermined time following the starting of an air-conditioning system, a target supercooling degree is corrected and the valve opening degree is reduced from an upper limit by a predetermined value to an intermediate valve opening degree. As a result, the actual supercooling degree can leave the state of zero dryness, and can approach a target supercooling degree.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: June 13, 2000
    Assignee: Denso Corporation
    Inventor: Kunio Iritani
  • Patent number: 6044653
    Abstract: An automotive air conditioner which conditions air making use of radiation of heat of a condenser and absorption of heat of an evaporator effectively. The evaporator 207 and the condenser 203 are disposed in a duct 100. A bypass passageway 150 is provided sidewardly of the condenser 203 in the duct 100, and a flow rate of air bypassing the condenser 203 is controlled by pivotal motion of an air mixing damper 154. Another bypass passage is provided sidewardly of the evaporator 207 in the duct 100, and a flow rate of air bypassing the evaporator 207 is controlled by pivotal motion of a bypass damper 159. Air is conditioned to an optimum blown out air temperature by varying the cooling rate at the evaporator 207 and the heating rate at the condenser 203 and is blown out to a room of an automobile from spit holes 141, 142 and 143.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: April 4, 2000
    Assignee: Nippondenso Co., Ltd.
    Inventors: Kunio Iritani, Shigeo Numazawa, Kenichi Fujiwara, Yasushi Yamanaka, Akira Isaji, Nobunao Suzuki
  • Patent number: 6035653
    Abstract: An air conditioner capable of enhancing responsivity of a blowout temperature of conditioned air while preventing occurrence of an overshoot or undershoot condition of the blowout temperature when a user gives an instruction to change the blowout temperature in a dehumidifying operation mode. In a control state, if a set temperature level is adjusted to increase a blowout temperature of conditioned air by increasing the target condenser outlet temperature, the rotating speed of the refrigerant compressor is increased, while the restriction opening of the heating expansion valve is maintained. Thus, the condenser outlet temperature is regulated to the target temperature with minimal undershoot or overshoot of the target temperature.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: March 14, 2000
    Assignee: Denso Corporation
    Inventors: Satoshi Itoh, Kunio Iritani