Patents by Inventor Kunio Kondo

Kunio Kondo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070167588
    Abstract: The present invention provides a polymer material showing high luminous efficiency at a low voltage and suitable for increasing the emission area and for the mass production, and an organic light emitting device using the same. The present invention relates to a polymer compound comprising a boron-containing monomer unit represented by formula (1): [in the formula, A represents a triphenyl boron group in which the phenyl group may be substituted, R16 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
    Type: Application
    Filed: December 10, 2004
    Publication date: July 19, 2007
    Applicant: SHOWA DENKO K.K.
    Inventors: Tsuyoshi Kato, Kunio Kondo
  • Patent number: 7238434
    Abstract: This invention relates to a welded line pipe structure for transporting corrosive petroleum or natural gas. It is constituted by martensitic stainless steel pipes containing 8–16% Cr and at most 0.05% C. By suitably controlling the welding conditions at the time of girth welding of the steel pipes so as to ensure that the Cr concentration in grain boundary Cr-depleted portions existing immediately beneath a weld oxide scale is at least 5%, the occurrence of SCC in a high temperature CO2 environment can be prevented.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 3, 2007
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hisashi Amaya, Kazuhiro Ogawa, Kunio Kondo, Masayuki Sagara, Hiroyuki Hirata
  • Patent number: 7225868
    Abstract: (1) A steel pipe that is expanded radially in a state wherein it was inserted in a well such as an oil well, characterized in that the non-uniform wall thickness ratio E0 (%) before expanding satisfies the following expression {circle around (1)}. E0?30/(1+0.018?){circle around (1)} Wherein ? is the pipe expansion ratio (%) calculated by the following expression {circle around (2)}. ?=[(inner diameter of the pipe after expanding?inner diameter of the pipe before expanding)/inner diameter of the pipe before expanding]×100{circle around (2)} (2) A steel pipe that should be expanded radially in a state wherein it is inserted in a well, such as an oil well, characterized in that the eccentric non-uniform wall thickness ratio is 10% or less. When the embedding-expanding method is performed with use of the steel pipe of (1) or (2), lowering of collapse strength of the expanded steel pipe is prevented and bending thereof can be decreased.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: June 5, 2007
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yuji Arai, Kunio Kondo, Hisashi Amaya, Akihito Yamane
  • Publication number: 20070101789
    Abstract: A seamless steel tube comprising, in mass %, C: 0.30 to 0.50%, Si: 0.5% or less, Mn: 0.3 to 2.0%, P: 0.025% or less, S: 0.005% or less, Cr: 0.15 to 1.0%, Al: 0.001 to 0.05%, Ti: 0.005 to 0.05%, N: 0.02% or less, B: 0.0005 to 0.01% and O (oxygen): 0.0050% or less, wherein Beff defined in following equation (a) or (b) takes a value of 0.0001 or more, where Beff=B?10.8×(N?14×Ti/47.9)/14 - - - (a) when Neff=N?14×Ti/47.9?0, and Beff=B - - - (b) when Neff=N?14×Ti/47.9<0, thus enabling to provide seamless steel tubes having excellent cold workability, hardenability, toughness and torsion fatigue strength and being most suitable for hollow shaft blanks for use in making one-piece type hollow drive shafts as well.
    Type: Application
    Filed: November 3, 2006
    Publication date: May 10, 2007
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Kunio Kondo, Yuji Arai
  • Publication number: 20070069338
    Abstract: (1) A metal oxide dispersion for a dye-sensitized solar cell, which contains metal oxide fine particles, a binder composed of a polymer compound having an action to bind to the fine particles and a solvent; (2) a method for producing a photoactive electrode for a dye-sensitized solar cell by coating a dispersion containing the above-mentioned binder and metal oxide fine particles on a sheet-shaped electrode; (3) a photoactive electrode for a dye-sensitized solar cell, obtained by the method, which electrode has metal oxide containing the above-mentioned binder and metal oxide fine particles; and (4) a dye-sensitized solar cell with the above-mentioned photoactive electrode.
    Type: Application
    Filed: November 28, 2006
    Publication date: March 29, 2007
    Inventors: Katsumi Murofushi, Kunio Kondo, Ryusuke Sato
  • Patent number: 7157788
    Abstract: (1) A metal oxide dispersion for a dye-sensitized solar cell, which contains metal oxide fine particles, a binder composed of a polymer compound having an action to bind to the fine particles and a solvent; (2) a method for producing a photoactive electrode for a dye-sensitized solar cell by coating a dispersion containing the above-mentioned binder and metal oxide fine particles on a sheet-shaped electrode; (3) a photoactive electrode for a dye-sensitized solar cell, obtained by the method, which electrode has metal oxide containing the above-mentioned binder and metal oxide fine particles; and (4) a dye-sensitized solar cell with the above-mentioned photoactive electrode.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: January 2, 2007
    Assignee: Showa Denko K.K.
    Inventors: Katsumi Murofushi, Kunio Kondo, Ryusuke Sato
  • Publication number: 20060219332
    Abstract: A manufacturing method of high-strength, high-toughness seamless steel pipe for linepipe comprises: (1) hot piercing a billet, in which the carbon equivalent value Ceq defined by expression (a): Ceq=C+Mn/6+(Cu+Ni)/5+(Cr+Mo+V)/5[%] . . . (a) is not greater than 0.60 wt %, and then subjecting the pierced billet to hot rolling at a temperature of 950° C. or higher to obtain a seamless steel pipe; (2) putting the seamless steel pipe immediately, without cooling to Ar3 point or lower, into a furnace kept at Ar3 point+50° C. to 1100° C. to carry out heating; (3) cooling the seamless steel pipe at a cooling rate of 5° C./sec or higher; and (4) tempering the seamless steel pipe at temperature of 550° C. to Ac1 point. A high-strength and high-toughness seamless steel pipe with little strength unevenness can be manufactured, which can be effectively employed for linepipes in cold areas.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 5, 2006
    Inventors: Tsuneo Murase, Kunio Kondo, Nobuyuki Hisamune
  • Publication number: 20060201587
    Abstract: This invention relates to a welded line pipe structure for transporting corrosive petroleum or natural gas. It is constituted by martensitic stainless steel pipes containing 8-16% Cr and at most 0.05% C. By suitably controlling the welding conditions at the time of girth welding of the steel pipes so as to ensure that the Cr concentration in grain boundary Cr-depleted portions existing immediately beneath a weld oxide scale is at least 5%, the occurrence of SCC in a high temperature CO2 environment can be prevented.
    Type: Application
    Filed: March 3, 2006
    Publication date: September 14, 2006
    Inventors: Hisashi Amaya, Kazuhiro Ogawa, Kunio Kondo, Masayuki Sagara, Hiroyuki Hirata
  • Publication number: 20060174979
    Abstract: A martensitic stainless steel having a resistance to sulfide stress corrosion cracking superior to Super 13 Cr steel and having a strength and corrosion resistance comparable to dual phase stainless steels has a chemical composition consisting essentially of, in mass %, C: 0.001-0.1%, Si: 0.05-1.0%, Mn: 0.05-2.0%, P: at most 0.025%, S: at most 0.010%, Cr: 11-18%, Ni: 1.5-10%, sol. Al: 0.001-0.1%, N: at most 0.1%, O: at most 0.01%, Cu: 0-5%, solid solution Mo: 3.5-7%, the composition satisfying the following Equation (1), optionally at least one element selected from at least one of the following Groups A-C, and a remainder of Fe and impurities and undissolved Mo, if undissolved Mo is present. Ni-bal.=30(C+N)+0.5(Mn+Cu)+Ni+8.2?1.1(Cr+Mo+1.5Si)??4.5??Equation (1) Group A—W: 0.2-5% Group B—V: 0.001-0.50%, Nb: 0.001-0.50%, Ti: 0.001-0.50%, and Zr: 0.001-0.50% Group C—Ca: 0.0005-0.05%, Mg: 0.0005-0.05%, REM: 0.0005-0.05%, and B: 0.0001-0.
    Type: Application
    Filed: January 20, 2006
    Publication date: August 10, 2006
    Inventors: Kunio Kondo, Hisashi Amaya
  • Publication number: 20060130945
    Abstract: A high strength steel pipe for an airbag system has a steel composition comprising C: 0.05-0.20%, Si: 0.1-1.0%, P: at most 0.025%, S: at most 0.010%, Cr: 0.05-1.0%, Al: at most 0.10%, at least one of Ti and Mn satisfying (1) Ti?0.02% and (2) 0.4%?Mn+40Ti?1.2%, and a remainder of Fe. The composition may further include one or more of (i) at least one of Mo: 0.05-0.50%, Ni: 0.05-1.5%, V: 0.01-0.2%, and B: 0.0003-0.005%, (ii) at least one of Cu: 0.05-0.5% and Nb: 0.003-0.1%, and (iii) at least one of Ca: 0.0003-0.01%, Mg: 0.0003-0.01%, and REM: 0.0003-0.01%. The steel pipe can be manufactured by forming a pipe from the above-described steel composition to obtain prescribed dimensions, heating to at least the Ac1 transformation point and quenching, and then tempering at the Ac1 transformation point or below.
    Type: Application
    Filed: November 4, 2005
    Publication date: June 22, 2006
    Inventors: Yuji Arai, Kunio Kondo
  • Publication number: 20060124211
    Abstract: A steel pipe for an airbag inflator having a high strength of at least 900 MPa and preferably at least 1000 MPa in tensile strength along with a high toughness and exhibiting good resistance to bursting such that it has no propagation of cracks in a burst test at ?40° C. or below is manufactured by quenching a pipe of a steel comprising, in mass %, C: 0.05-0.20 %, Si: 0.1-1.0 %, P: at most 0.025 %, S: at most 0.010 %, Cr: 0.05-1.45 %, Al: at most 0.10 %, and one or both of Ti and Mn satisfying Ti<0.02% and 0.4%?Mn+40Ti?1.2% from a temperature of at least the Ac1 transformation point of the steel, tempering the pipe at a temperature lower than the Ac1 transformation point, applying cold working to it with a reduction of area of at most 65%, and subjecting it to stress relief annealing at a temperature lower than the Ac1 transformation point.
    Type: Application
    Filed: October 28, 2005
    Publication date: June 15, 2006
    Inventors: Takashi Takano, Yuji Arai, Kunio Kondo, Keisuke Hitoshio
  • Publication number: 20060009629
    Abstract: The present invention provides phosphorescent materials and polymer phosphorescent materials that generate lights of various colors including blue, green, yellow, orange and red, which are useful for high performance multicolor organic light-emitting EL devices, and also provides an organic light emitting device material containing a gold complex represented by formulae such as (2) and (6) below (symbols in the formulae are as described in the specification) in which gold is bonded to at least one atom selected from carbon, oxygen and sulfur, and organic light-emitting EL device including the material in its light-emitting layer.
    Type: Application
    Filed: November 14, 2003
    Publication date: January 12, 2006
    Inventors: Yoshiaki Takahashi, Koro Shirane, Kunio Kondo
  • Publication number: 20050274436
    Abstract: A martensitic stainless steel having a C content of 0.01 to 0.1 mass %, a Cr content of 9 to 15 mass % and a N content of not more than 0.1 mass %, wherein the maximum length of the carbides in the steel is 10 to 200 nm in the direction of the minor axis, or wherein the ratio of the average Cr concentration [Cr] to the average Fe concentration [Fe] in carbides in the steel ([Cr]/[Fe]) is not more than 0.4, or wherein the content of M23C6 type carbides is not more than 1 volume %, the content of M3C type carbides is 0.01 to 1.5 volume % and the content of MN type or M2N type nitrides is not more than 0.3 volume % is provided. This stainless steel has a high toughness in spite of both a relatively more C content and a high strength, thereby providing a, wide applicability to pipe material for oil wells containing carbon dioxide and a small amount of hydrogen sulfide, in particular for oil wells having a much greater depth.
    Type: Application
    Filed: April 11, 2003
    Publication date: December 15, 2005
    Inventors: Kunio Kondo, Takahiro Kushida, Yuichi Komizo, Masaaki Igarashi
  • Publication number: 20050167013
    Abstract: A high strength seamless steel pipe having mgh yield stress and excellent hydrogen-induced cracking resistance, comprises by mass %, C: 0.03-0.11%, Si: 0.05-0.5%, Mn: 0.8-1.6%, P: 0.025% or less, S: 0.003% or less, Ti: 0.002-0.017%, Al: 0.001-0.10%, Cr: 0.05-0.5%, Mo: 0.02-0.3%, V: 0.02-0.20%, Ca: 0.0005-0.005%, N: 0.008% or less and O (Oxygen): 0.004% or less, the balance Fe and impurities. The steel microstructure is bainite and/or martensite and ferrite is precipitated at grain boundaries. The seamless steel pipe can contain at least one of Cu: 0.05-0.5% and Ni: 0.05-0.5%. To produce the pipe, it is desirable to limit a starting temperature of quenching after rolling, a cooling rate and a tempering temperature.
    Type: Application
    Filed: March 25, 2005
    Publication date: August 4, 2005
    Inventors: Nobutoshi Murao, Nobuyuki Hisamune, Hajime Osako, Kunio Kondo
  • Patent number: 6878219
    Abstract: In order to manufacture a steel pipe for an air bag which can cope with increase in the pressure of gas blown into an air bag and decreases in the wall thickness of an accumulator, a steel having a composition, mass %, of: C: 0.05-0.20%, Si: 0.1-1.0%, Mn: 0.20-2.0%, P: at most 0.025%, S: at most 0.010%, Cr: 0.05-1.0%, Al: at most 0.10%, if necessary at least one of Mo: at most 0.50%, Ni: at most 1.5%, Cu: at most 0.5%, V: at most 0.2%, Ti: at most 0.1%, Nb: at most 0.1%, and B: at most 0.005%, and also if necessary, at least one of Ca: at most 0.01%, Mg: at most 0.01%, and REM (rare earth elements): at most 0.01%, and a remainder of Fe and impurities is used to produce a steel pipe, and the pipe is then subjected to cold working to predetermined dimensions, then to heating to a temperature of at least the Ac1 transformation temperature followed by quenching, and then to tempering at a temperature no higher than the Ac1 transformation temperature.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: April 12, 2005
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kunio Kondo, Miyuki Yamamoto, Takashi Takano, Kenichi Beppu, Susumu Hirano, Keisuke Hitoshio, Hidetoshi Kurata
  • Publication number: 20050039826
    Abstract: In order to manufacture a steel pipe for an air bag which can cope with increase in the pressure of gas blown into an air bag and decreases in the wall thickness of an accumulator, a steel having a composition, mass %, of: C: 0.05-0.20%, Si: 0.1-1.0%, Mn: 0.20-2.0%, P: at most 0.025%, S: at most 0.010%, Cr: 0.05-1.0%, Al: at most 0.10%, if necessary at least one of Mo: at most 0.50%, Ni: at most 1.5%, Cu: at most 0.5%, V: at most 0.2%, Ti: at most 0.1%, Nb: at most 0.1%, and B: at most 0.005%, and also if necessary, at least one of Ca: at most 0.01%, Mg: at most 0.01%, and REM (rare earth elements): at most 0.01%, and a remainder of Fe and impurities is used to produce a steel pipe, and the pipe is then subjected to cold working to predetermined dimensions, then to heating to a temperature of at least the Ac1 transformation temperature followed by quenching, and then to tempering at a temperature no higher than the Ac1 transformation temperature.
    Type: Application
    Filed: September 24, 2004
    Publication date: February 24, 2005
    Inventors: Kunio Kondo, Miyuki Yamamoto, Takashi Takano, Kenichi Beppu, Susumu Hirano, Keisuke Hitoshio, Hidetoshi Kurata
  • Publication number: 20050034790
    Abstract: A martensitic stainless steel comprising C: 0.01-0.10%, Si: 0.05-1.0%, Mn: 0.05-1.5%, P: not more than 0.03%, S: not more than 0.01%, Cr: 9-15%, Ni: 0.1-4.5%, Al: not more than 0.05% and N: not more than 0.1% in mass %, and further comprising at least one of Cu: 0.05-5% and Mo: 0.05-5%, the residual being Fe and impurities, is provided, wherein the contents of Cu and Mo satisfy the following formula (a) or (b), 0.2%?Mo+Cu/4?5%??(a) 0.55%?Mo+Cu/4?5%??(b) and wherein the hardness is 30-45 in HRC and the carbide amount in grain boundaries of the prior austenite is not more than 0.5 volume %. The marensitic stainless steel has excellent properties regarding the sulfide stress cracking resistance, the resistance to corrosive wear and the localized corrosion.
    Type: Application
    Filed: March 12, 2004
    Publication date: February 17, 2005
    Inventors: Hisashi Amaya, Kunio Kondo, Masakatsu Ueda, Keiichi Nakamura, Takahiro Kushida, Kazuyo Kushida
  • Patent number: 6845166
    Abstract: A plane driving type electroacoustic transducer having a film of diaphragm with a conduction pattern formed thereon and a magnetic circuit, wherein a vibration damping layer is provided on the diaphragm.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: January 18, 2005
    Assignee: Foster Electric Co., Ltd.
    Inventors: Akira Hara, Kunio Kondo
  • Publication number: 20050000601
    Abstract: A high strength steel pipe for an airbag system has a steel composition comprising C: 0.05-0.20%, Si: 0.1-1.0%, P; at most 0.025%, S: at most 0.010%, Cr: 0.05-1.0%, Al: at most 0.10% at least one of Ti and Mn satisfying (1) Ti?0.02% and (2) 0.4%?Mn+40Ti?1.2%, and a remainder of Fe. The composition may further include one or more of (i) at least one of Mo: 0.05-0.50%, Ni: 0.05-1.5%, V: 0.01-0.2%, and B: 0.0003-0.005%, (ii) at least one of Cu: 0.05-0.5% and Nb: 0.003-0.1%, and (iii) at least one of Ca: 0.0003-0.01%, Mg: 0.0003-0.01%, and REM: 0.0003-0.01%. The steel pipe can be manufactured by forming a pipe from the above-described steel composition to obtain prescribed dimensions, heating to at least the Ac1 transformation point and quenching, and then tempering at the Ac1 transformation point or below.
    Type: Application
    Filed: May 19, 2004
    Publication date: January 6, 2005
    Inventors: Yuji Arai, Kunio Kondo
  • Publication number: 20040238075
    Abstract: A non-heat treated seamless steel tube has a composition consisting of, by weight, C: 0.10 to 0.25%, Si: 0.05 to 1.0%, Mn: 0.5 to 2.5%, P: not more than 0.03%, S: not more than 0.05%, Cr: 0.5 to 2.0%, V: 0.03 to 0.3%, Al 0.003 to 0.10%, N: 0.001 to 0.
    Type: Application
    Filed: March 23, 2004
    Publication date: December 2, 2004
    Inventor: Kunio Kondo