Patents by Inventor Kwang-Ohk Cheon

Kwang-Ohk Cheon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120049168
    Abstract: Organic electronic devices comprising an improved charge transport layer. The charge transport layer comprises a covalently cross-linked host matrix. The covalently cross-linked matrix comprises a charge transport compound as molecular subunits that are cross-linked to each other. The charge transport layer further comprises a second charge transport compound as an additive, which may be a small molecule, or a polymer, or a mixture of both. The charge transport layer may be a hole transport layer. The charge transport compound for the additive may be an arylamine compound, such as NPD.
    Type: Application
    Filed: June 20, 2011
    Publication date: March 1, 2012
    Applicant: UNIVERSAL DISPLAY CORPORATION
    Inventors: Michael INBASEKARAN, Kwang-Ohk CHEON, Chuanjun XIA, Siddharth Harikrishna MOHAN
  • Patent number: 8120239
    Abstract: A display device that includes an underlying excitation source, a converting layer, and an optical filter layer. The underlying excitation source emits light in a spatial pattern that may or may not be altered in time and has a short wavelength capable of being at least partially absorbed by the overlying converting layer. The converting layer can be a contiguous film or pixels of quantum dots that can be dispersed in a matrix material. This converting layer is capable of absorbing at least a portion of the wavelength(s) of the light from the underlying excitation source and emitting light at one or more different wavelengths. The optical filter layer prevents the residual light from the excitation source that was not absorbed by the converting layer from being emitted by the display device.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Ohk Cheon, Michael Locascio, San Ming Yang
  • Publication number: 20110177641
    Abstract: A method of fabricating an organic light emitting device is provided. A first electrode is provided, over which the rest of the device will be fabricated. A first organic layer is deposited over the first electrode via solution processing. The first organic layer includes: i. an organic host material of the first organic layer; ii. a first organic emitting material of the first organic layer; iii. a second organic emitting material of the first organic layer; A second organic layer is deposited over and in direct contact with the first organic layer. The second organic layer includes an organic emitting material of the second organic layer. A second electrode is then deposited over the second organic layer. The device may include other layers.
    Type: Application
    Filed: October 27, 2010
    Publication date: July 21, 2011
    Applicant: Universal Display Corporation
    Inventors: Kwang Ohk Cheon, Mike Inbasekaran, Julie J. Brown
  • Publication number: 20100323464
    Abstract: A method of forming an organic layer for an organic electronic device (e.g., an OLED) by using a liquid composition comprising a small molecule organic semiconductor material mixed in a solvent preparation in which the content of higher boiling impurities is reduced. The solvent preparation comprises a high boiling point solvent and 0.1 wt % or less of impurities having a higher boiling point than the solvent. The liquid composition is deposited on a surface by inkjet printing to form the organic layer. Also, provided are liquid compositions which can be used to make organic layers.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 23, 2010
    Applicant: UNIVERSAL DISPLAY CORPORATION
    Inventors: Kwang-Ohk CHEON, Chuanjun XIA, Suman LAYEK
  • Publication number: 20100200841
    Abstract: A method of forming an organic layer by using a liquid composition comprising a small molecule organic semiconductor material mixed in a ketone solvent. The liquid composition is deposited on a surface to form the organic layer. The ketone solvent may be an aromatic ketone solvent, such as a tetralone solvent. The organic semiconductor material may be cross-linkable to provide a cross-linked organic layer. The method can be used to make organic electronic devices, such as organic light emitting devices. In another aspect, the liquid composition comprises a small molecule organic semiconductor material mixed in an aromatic ether solvent. Also, provided are liquid compositions which can be used to make organic layers.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Inventors: Kwang-Ohk CHEON, Chuanjun XIA, Michael INBASEKARAN, Takuya SONOYAMA, Masaki ITO, Masahiro UCHIDA, Shunichi SEKI
  • Patent number: 7723744
    Abstract: Light-emitting devices are provided that incorporate one or more underlying LED chips or other light sources and a layer having one or more populations of nanoparticles disposed over the light source. The nanoparticles may absorb some light emitted by the underlying source, and re-emit light at a different level. By varying the type and relative concentration of nanoparticles, different emission spectra may be achieved. White light and specialty-color emission may be achieved. Devices also may include multiple LED chips, with nanoparticles disposed over one or more underlying chips in an array.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 25, 2010
    Assignee: Evident Technologies, Inc.
    Inventors: Jennifer Gillies, David Socha, Kwang-Ohk Cheon, Michael LoCasio
  • Publication number: 20080246017
    Abstract: Light-emitting devices are provided that incorporate one or more underlying LED chips or other light sources and a layer having one or more populations of nanoparticles disposed over the light source. The nanoparticles may absorb some light emitted by the underlying source, and re-emit light at a different level. By varying the type and relative concentration of nanoparticles, different emission spectra may be achieved. White light and specialty-color emission may be achieved. Devices also may include multiple LED chips, with nanoparticles disposed over one or more underlying chips in an array.
    Type: Application
    Filed: December 7, 2007
    Publication date: October 9, 2008
    Applicant: EVIDENT TECHNOLOGIES
    Inventors: Jennifer GILLIES, David Socha, Kwang Ohk CHEON, Michael Locasio
  • Publication number: 20080246388
    Abstract: A display device that includes an underlying excitation source, a converting layer, and an optical filter layer. The underlying excitation source emits light in a spatial pattern that may or may not be altered in time and has a short wavelength capable of being at least partially absorbed by the overlying converting layer. The converting layer can be a contiguous film or pixels of quantum dots that can be dispersed in a matrix material. This converting layer is capable of absorbing at least a portion of the wavelength(s) of the light from the underlying excitation source and emitting light at one or more different wavelengths. The optical filter layer prevents the residual light from the excitation source that was not absorbed by the converting layer from being emitted by the display device.
    Type: Application
    Filed: March 13, 2008
    Publication date: October 9, 2008
    Applicant: EVIDENT TECHNOLOGIES, Inc.
    Inventors: Kwang-Ohk Cheon, Michael LoCascio, San Ming Yang
  • Publication number: 20080173886
    Abstract: Solid state lighting devices containing quantum dots dispersed in polymeric or silicone acrylates and deposited over a light source. Solid state lighting devices with different populations of quantum dots either dispersed in matrix materials or not are also provided. Also provided are solid state lighting devices with non-absorbing light scattering dielectric particles dispersed in a matrix material containing quantum dots and deposited over a light source. Methods of manufacturing solid state lighting devices containing quantum dots are also provided.
    Type: Application
    Filed: May 11, 2007
    Publication date: July 24, 2008
    Applicant: EVIDENT TECHNOLOGIES, INC.
    Inventors: Kwang-Ohk CHEON, Jennifer GILLIES, David SOCHA, David DUNCAN, Michael LoCASIO
  • Publication number: 20070012941
    Abstract: A light emitting diode (LED) formed by depositing an LED chip and coupling a stability layer to the LED chip. Semiconductor nanocrystals are placed in a first matrix material to form a nanocrystal complex layer. The nanocrystal complex layer is deposited on top of the stability layer. A thickness of the stability layer is chosen to maximizes a power of a light output by the nanocrystal complex layer. The matrix material and the stability layer can be of the same type of material. Additional layers of matrix material can be deposited on top of the nanocrystal complex layer. These additional layers can comprise matrix material only or can comprise matrix material and semiconductor nanocrystals to form another nanocrystal complex layer.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 18, 2007
    Inventor: Kwang-Ohk Cheon
  • Publication number: 20070012928
    Abstract: A white light light emitting diode (LED) formed by depositing an LED chip that emits light at a first wavelength and forming a semiconductor nanocrystal complex. The semiconductor nanocrystal complex absorbs at least a portion of the light emitted by the LED chip and emits light at a second wavelength. The semiconductor nanocrystal complex and a powdered phosphor are deposited over the LED chip. The powdered phosphor also absorbs a portion of the light emitted by the LED chip and emits light at a third wavelength. The semiconductor nanocrystal complex is selected to provide a color of the spectrum that is lacking from the combined output of phosphor/LED chip combination, to improve a Color Rating Index (CRI) value and to provide a “warmer” light. The semiconductor nanocrystal complex and the powdered phosphor can be mixed into the same matrix material or into separate matrix materials and/or deposited as separate layers.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 18, 2007
    Inventors: Zouyan Peng, Michael Locascio, Kwang-Ohk Cheon