Patents by Inventor Kylan SZETO

Kylan SZETO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240263168
    Abstract: A method for sequencing a target polynucleotide includes detecting a first series of nucleotide incorporations complementary to at least a portion of the target polynucleotide. The first series of nucleotide incorporations forms a first complementary polynucleotide. The target nucleotide is secured to a substrate disposed in a sequencing zone of an assembly. The method further includes moving the substrate to which the target nucleotide is secured to a templating zone of the assembly; removing the first complementary polynucleotide when the substrate is disposed at the templating zone of the assembly, the target polynucleotide remaining secured to the substrate; following the removing, moving the substrate to which the target polynucleotide is secured to the sequencing zone; and detecting a second series of nucleotide incorporations complementary to at least a portion of the target polynucleotide, the second series of nucleotide incorporations forming a second complementary polynucleotide.
    Type: Application
    Filed: April 16, 2024
    Publication date: August 8, 2024
    Inventors: Chiu Tai Andrew Wong, Mark Beauchemin, Shanti Shankar, Kylan Szeto
  • Patent number: 11959074
    Abstract: A method for sequencing a target polynucleotide includes detecting a first series of nucleotide incorporations complementary to at least a portion of the target polynucleotide. The first series of nucleotide incorporations forms a first complementary polynucleotide. The target nucleotide is secured to a substrate disposed in a sequencing zone of an assembly. The method further includes moving the substrate to which the target nucleotide is secured to a templating zone of the assembly; removing the first complementary polynucleotide when the substrate is disposed at the templating zone of the assembly, the target polynucleotide remaining secured to the substrate; following the removing, moving the substrate to which the target polynucleotide is secured to the sequencing zone; and detecting a second series of nucleotide incorporations complementary to at least a portion of the target polynucleotide, the second series of nucleotide incorporations forming a second complementary polynucleotide.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: April 16, 2024
    Inventors: Chiu Tai Andrew Wong, Kylan Szeto, Shanti Shankar, Mark Beauchemin
  • Publication number: 20220154176
    Abstract: A method for sequencing a target polynucleotide includes detecting a first series of nucleotide incorporations complementary to at least a portion of the target polynucleotide. The first series of nucleotide incorporations forms a first complementary polynucleotide. The target nucleotide is secured to a substrate disposed in a sequencing zone of an assembly. The method further includes moving the substrate to which the target nucleotide is secured to a templating zone of the assembly; removing the first complementary polynucleotide when the substrate is disposed at the templating zone of the assembly, the target polynucleotide remaining secured to the substrate; following the removing, moving the substrate to which the target polynucleotide is secured to the sequencing zone; and detecting a second series of nucleotide incorporations complementary to at least a portion of the target polynucleotide, the second series of nucleotide incorporations forming a second complementary polynucleotide.
    Type: Application
    Filed: November 12, 2021
    Publication date: May 19, 2022
    Inventors: Chiu Tai Andrew WONG, Kylan SZETO, Shanti SHANKAR, Mark BEAUCHEMIN
  • Patent number: 10132798
    Abstract: The present invention relates to a microcolumn device for selecting nucleic acid aptamers for single and multiple target molecules, as well as a method for making the microcolumn device. The present invention also relates to a system for selecting nucleic acid aptamers for single and multiple target molecules. The present invention further relates to methods of using the microcolumn device for selecting nucleic acid aptamers for multiple target molecules. Kits that include one or more microcolumn device and/or system of the present invention are also disclosed.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: November 20, 2018
    Assignee: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, David R. Latulippe, John T. Lis, Abdullah Ozer, Kylan Szeto
  • Patent number: 9803192
    Abstract: The present invention generally relates to microcolumn affinity chromatography devices, systems that include the microcolumn affinity chromatography devices of the present disclosure, methods of using the devices and the systems of the present disclosure, and methods of making the devices and the systems of the present disclosure. In certain embodiments, the microcolumn affinity chromatography device is suitable for conducting affinity chromatography in multiple microcolumns in parallel and/or in series.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: October 31, 2017
    Assignee: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, Kylan Szeto, Sarah Reinholt, John T. Lis, Abdullah Ozer
  • Publication number: 20150291952
    Abstract: The present invention relates to a method for selecting an aptamer for a target molecule. The method involves providing a random oligonucleotide library comprising a plurality of unique random sequence oligonucleotides; providing a target mixture comprising at least one target molecule; and subjecting the random oligonucleotide library and the target mixture to at least one round of an aptamer isolation protocol to yield at least one aptamer for the target molecule, wherein a round of the aptamer isolation protocol comprises at least one selection cycle followed by an amplification cycle. The present invention also relates to systems and devices for implementing or performing the method of the present invention. The present invention further relates to using the method to isolate aptamers for high-throughput sequencing analysis and other aptamer analysis protocols.
    Type: Application
    Filed: August 15, 2013
    Publication date: October 15, 2015
    Applicant: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, David R. Latulippe, John T. Lis, Abdullah Ozer, Kylan Szeto
  • Publication number: 20150204859
    Abstract: The present invention relates to a microcolumn device for selecting nucleic acid aptamers for single and multiple target molecules, as well as a method for making the microcolumn device. The present invention also relates to a system for selecting nucleic acid aptamers for single and multiple target molecules. The present invention further relates to methods of using the microcolumn device for selecting nucleic acid aptamers for multiple target molecules. Kits that include one or more microcolumn device and/or system of the present invention are also disclosed.
    Type: Application
    Filed: May 13, 2013
    Publication date: July 23, 2015
    Applicant: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, David R. Latulippe, John T. Lis, Abdullah Ozer, Kylan Szeto
  • Publication number: 20150166987
    Abstract: The present invention generally relates to microcolumn affinity chromatography devices, systems that include the microcolumn affinity chromatography devices of the present disclosure, methods of using the devices and the systems of the present disclosure, and methods of making the devices and the systems of the present disclosure. In certain embodiments, the microcolumn affinity chromatography device is suitable for conducting affinity chromatography in multiple microcolumns in parallel and/or in series.
    Type: Application
    Filed: October 6, 2014
    Publication date: June 18, 2015
    Applicant: CORNELL UNIVERSITY
    Inventors: Harold G. CRAIGHEAD, Kylan SZETO, Sarah REINHOLT, John T. LIS, Abdullah OZER