Patents by Inventor Kyoko Imai

Kyoko Imai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10768189
    Abstract: When a sample of biological origin in an aqueous solution is used as the measurement medium in analysis using an electrochemical process, and a voltage of +1.2 V or greater (with saturated silver-silver chloride electrode potential as a reference) is applied, there are instances in which bubbles are observed to be produced within the flow cell, due to an electrolysis reaction deriving from the measurement buffer. There is a possibility that bubbles produced on the electrode will cover the electrode surface, reducing the effective surface area of the electrode. Also, the distribution of magnetic particles captured on the electrode will be disturbed by the gas produced thereby, lowering the reproducibility of the results of the analysis. Deaeration of the measurement medium prior to introduction of the measurement medium into the detector minimizes the effects of bubble production in degrading the analytical capability makes it possible to carry out highly sensitive electrochemical analysis.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: September 8, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Kenta Imai, Yoshinori Negishi, Toshinari Sakurai, Kyoko Imai
  • Patent number: 10444303
    Abstract: A magnetic sensor including a first magneto resistive effect element located on a first surface of a substrate and having a sensitivity axis in a first direction that is one of in-plane directions of the first surface, a positioning soft magnetic body including a first most proximal portion of which a relative position with respect to the magneto resistive effect element is defined, and provided in a non-contact manner with respect to the first magneto resistive effect element, and a first soft magnetic body and a second soft magnetic body juxtaposed in the first direction and extending in a direction away from the first surface, and each of the first soft magnetic body and the second soft magnetic body is magnetically connected to the positioning soft magnetic body.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: October 15, 2019
    Assignee: Alps Alpine Co., Ltd.
    Inventors: Masayuki Obana, Hideto Ando, Yuki Imai, Kunio Yamanaka, Kyoko Hotta, Akira Miyatake, Toshihiro Kobayashi, Kenichiro Ikeda, Takafumi Noguchi
  • Patent number: 10294519
    Abstract: A convenient method for nucleic acid analysis is provided, which enables 1000 or more types of nucleic acid to be analyzed collectively with high comprehensiveness and with a dynamic range of at least four digits. In particular, provided is a very effective analytical method especially for untranslated RNAs and microRNAs, of which the types of target nucleic acids is 10000 or lower. Nucleic acids can be analyzed conveniently and rapidly with high comprehensiveness and quantitative performance at single-molecule sensitivity and resolution by following the steps of: preparing a group of target nucleic acid fragments one molecule at a time and hybridizing the nucleic acid molecules, which have known base sequences and have been labeled with the fluorescence substances, with the group of the target nucleic acid fragments to detect the fluorescence substances labeling the hybridized nucleic acid molecules.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: May 21, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Patent number: 10018644
    Abstract: A cartridge for dispensing a fluid is presented. The cartridge comprises a reservoir chamber for receiving the fluid. The reservoir chamber has a fluid outlet. The cartridge further comprises a controllable dispenser component for dispensing a dispensing volume of the fluid from the reservoir chamber. The dispenser component is connected to the fluid outlet of the reservoir. The cartridge further comprises a single compressible fluid pump with a single elastic pumping element and a conduit extending from the fluid pump towards the fluid outlet. The fluid pump discharges a mixing volume of the fluid from the conduit into the reservoir chamber upon compression of the elastic pumping element. The mixing volume depends on the degree of compression of the elastic pumping element. The fluid pump sucks in the mixing volume from the reservoir into the conduit upon decompression of the elastic pumping element.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: July 10, 2018
    Assignees: Roche Diagnostics Operations, Inc., Hitachi High-Technologies Corporation
    Inventors: Thorsten Brueckner, Christoph Boehm, Juergen Spinke, Terumi Tamura, Taku Sakazume, Kyoko Imai
  • Patent number: 9823243
    Abstract: An object of the present invention is to provide a highly sensitive immunoanalysis method and analysis apparatus. The invention relates to an analysis method and an analysis apparatus which are constituted in such a way that a component to be measured is reacted with capture component specifically reacting thereto and the reactant is labeled when the component to be measured is present and which are characterized by analyzing the component to be measured with single-molecule sensitivity and resolution by arranging the labeled reactant in a spatially separated certain position and detecting the label of the labeled reactant.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: November 21, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kyoko Imai, Toshiro Saito, Kazumichi Imai
  • Patent number: 9822399
    Abstract: The method for analyzing biomolecules, includes the steps of: immobilizing biomolecules to be analyzed on surfaces of magnetic microparticles; reacting labeled probe molecules with the biomolecules to be analyzed; collecting and immobilizing the microparticles on a support substrate; and measuring a label on the support substrate. Since single-molecule immobilized magnetic microparticles are used in the present invention, the number of biomolecules can be counted, and since hybridization and an antigen-antibody reaction are performed with the microparticles having biomolecules immobilized thereon dispersed, the reaction can be rapidly performed. Further, the type and the abundance of biomolecules of interest can be determined at a single molecular level, so as to evaluate, in particular, the absolute concentration of biomolecules.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 21, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Patent number: 9759681
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 12, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Publication number: 20160334428
    Abstract: When a sample of biological origin in an aqueous solution is used as the measurement medium in analysis using an electrochemical process, and a voltage of +1.2 V or greater (with saturated silver-silver chloride electrode potential as a reference) is applied, there are instances in which bubbles are observed to be produced within the flow cell, due to an electrolysis reaction deriving from the measurement buffer. There is a possibility that bubbles produced on the electrode will cover the electrode surface, reducing the effective surface area of the electrode. Also, the distribution of magnetic particles captured on the electrode will be disturbed by the gas produced thereby, lowering the reproducibility of the results of the analysis. Deaeration of the measurement medium prior to introduction of the measurement medium into the detector minimizes the effects of bubble production in degrading the analytical capability makes it possible to carry out highly sensitive electrochemical analysis.
    Type: Application
    Filed: January 9, 2015
    Publication date: November 17, 2016
    Inventors: Kenta IMAI, Yoshinori NEGISHI, Toshinari SAKURAI, Kyoko IMAI
  • Publication number: 20160139164
    Abstract: A cartridge for dispensing a fluid is presented. The cartridge comprises a reservoir chamber for receiving the fluid. The reservoir chamber has a fluid outlet. The cartridge further comprises a controllable dispenser component for dispensing a dispensing volume of the fluid from the reservoir chamber. The dispenser component is connected to the fluid outlet of the reservoir. The cartridge further comprises a single compressible fluid pump with a single elastic pumping element and a conduit extending from the fluid pump towards the fluid outlet. The fluid pump discharges a mixing volume of the fluid from the conduit into the reservoir chamber upon compression of the elastic pumping element. The mixing volume depends on the degree of compression of the elastic pumping element. The fluid pump sucks in the mixing volume from the reservoir into the conduit upon decompression of the elastic pumping element.
    Type: Application
    Filed: January 26, 2016
    Publication date: May 19, 2016
    Inventors: Thorsten Brueckner, Christoph Boehm, Juergen Spinke, Terumi Tamura, Taku Sakazume, Kyoko Imai
  • Patent number: 9297820
    Abstract: An automatic analyzer includes a storage unit for storing operation information information about usage histories of expendable supplies provided for the analysis, and an analysis-ID control unit giving an ID to the analysis, the analysis ID being used as information for identifying the analysis to derive a calibration curve. Data stored in the storage unit is organized along the same time axis both in the order of samples subjected to the analysis and inspection, and in the order of analysis items, so that the data is output in a total data display area. The data is organized from the viewpoint of an analysis process of an analysis item of each sample. By use of information used to identify an influence range based on a kind of an abnormal state, which is stored beforehand, a judgment is made as to whether or not it is necessary to perform reinspection.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: March 29, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Noriko Iizumi, Tomoko Tomiyama, Yoshimitsu Takagi, Kyoko Imai, Ryuichiro Kodama, Tomonori Mimura
  • Patent number: 9221055
    Abstract: Nucleic acid analysis apparatus includes a plurality of temperature adjustment apparatuses, a rotating mechanism, a delivery base and an ejection base, a delivery drive mechanism, an ejection drive mechanism, and a detection apparatus. The rotating mechanism can include a rotating shaft and a plurality of pressing portions that rotate around the rotating shaft. The reaction plate assembly can move over the temperature adjustment apparatuses along the circumferential direction in a state of being pressed onto the temperature adjustment apparatuses by the pressing portions. The delivery drive mechanism can cause the reaction plate assembly to be moved radially inward and delivered between the pressing portions and temperature adjustment apparatuses. The ejection drive mechanism can cause the reaction plate assembly to be moved radially outward and ejected from between the pressing portions and temperature adjustment apparatuses onto the ejection base.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: December 29, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yasunori Shoji, Muneo Maeshima, Chihiro Uematsu, Makiko Takahashi, Kyoko Imai
  • Publication number: 20150308977
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 29, 2015
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Publication number: 20150212082
    Abstract: An object of the present invention is to provide a highly sensitive immunoanalysis method and analysis apparatus. The invention relates to an analysis method and an analysis apparatus which are constituted in such a way that a component to be measured is reacted with capture component specifically reacting thereto and the reactant is labeled when the component to be measured is present and which are characterized by analyzing the component to be measured with single-molecule sensitivity and resolution by arranging the labeled reactant in a spatially separated certain position and detecting the label of the labeled reactant.
    Type: Application
    Filed: June 21, 2013
    Publication date: July 30, 2015
    Inventors: Kyoko Imai, Toshiro Saito, Kazumichi Imai
  • Patent number: 8999240
    Abstract: An automatic analyzer and an automatic analyzing system to identify samples and reagents used in the analyzer and members used in measurement of at least two objects in common: system reagents or buffer solution; sensor parts; probes; nozzles; chips; dispensing cups; tubes; ISE electrodes; detectors; deionized water; and waste, and to unify management of identification information thereof and a measurement result.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 7, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Noriko Maeda, Kyoko Imai, Taku Sakazume, Yukie Tokiwa, Kantaro Suzuki
  • Publication number: 20140295430
    Abstract: The method for analyzing biomolecules, includes the steps of: immobilizing biomolecules to be analyzed on surfaces of magnetic microparticles; reacting labeled probe molecules with the biomolecules to be analyzed; collecting and immobilizing the microparticles on a support substrate; and measuring a label on the support substrate. Since single-molecule immobilized magnetic microparticles are used in the present invention, the number of biomolecules can be counted, and since hybridization and an antigen-antibody reaction are performed with the microparticles having biomolecules immobilized thereon dispersed, the reaction can be rapidly performed. Further, the type and the abundance of biomolecules of interest can be determined at a single molecular level, so as to evaluate, in particular, the absolute concentration of biomolecules.
    Type: Application
    Filed: October 4, 2012
    Publication date: October 2, 2014
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Publication number: 20140200162
    Abstract: A convenient method for nucleic acid analysis is provided, which enables 1000 or more types of nucleic acid to be analyzed collectively with high comprehensiveness and with a dynamic range of at least four digits. In particular, provided is a very effective analytical method especially for untranslated RNAs and microRNAs, of which the types of target nucleic acids is 10000 or lower. Nucleic acids can be analyzed conveniently and rapidly with high comprehensiveness and quantitative performance at single-molecule sensitivity and resolution by following the steps of: preparing a group of target nucleic acid fragments one molecule at a time and hybridizing the nucleic acid molecules, which have known base sequences and have been labeled with the fluorescence substances, with the group of the target nucleic acid fragments to detect the fluorescence substances labeling the hybridized nucleic acid molecules.
    Type: Application
    Filed: May 16, 2012
    Publication date: July 17, 2014
    Applicant: HITACHI HIGH TECHNOLOGIES CORPORATION
    Inventors: Toshiro Saito, Koshin Hamasaki, Satoshi Takahashi, Muneo Maeshima, Kyoko Imai, Kazumichi Imai, Ryuji Tao
  • Publication number: 20130304425
    Abstract: An automatic analyzer and an automatic analyzing system to identify samples and reagents used in the analyzer and members used in measurement of at least two objects in common: system reagents or buffer solution; sensor parts; probes; nozzles; chips; dispensing cups; tubes; ISE electrodes; detectors; deionized water; and waste, and to unify management of identification information thereof and a measurement result.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Noriko MAEDA, Kyoko IMAI, Taku SAKAZUME, Yukie TOKIWA, Kantaro SUZUKI
  • Publication number: 20130230908
    Abstract: Provided is a technology such that, in nucleic acid analysis, a high degree of freedom in loading or unloading a reaction plate can be obtained and a sample can be efficiently analyzed. A reaction plate assembly includes a reaction plate with one or more reaction wells, a visible light transmissive cover mounted on the reaction plate and covering the reaction wells, and a visible light transmissive weight member covering the cover. The reaction wells are disposed in an arc shape along the circumference of a circle with a predetermined radius r1.
    Type: Application
    Filed: October 27, 2011
    Publication date: September 5, 2013
    Inventors: Yasunori Shoji, Muneo Maeshima, Chihiro Uematsu, Makiko Takahashi, Kyoko Imai
  • Publication number: 20120282141
    Abstract: An automatic analyzer and an automatic analyzing system to identify samples and reagents used in the analyzer and members used in measurement of at least two objects in common: system reagents or buffer solution; sensor parts; probes; nozzles; chips; dispensing cups; tubes; ISE electrodes; detectors; deionized water; and waste, and to unify management of identification information thereof and a measurement result.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 8, 2012
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Noriko MAEDA, Kyoko IMAI, Taku SAKAZUME, Yukie TOKIWA, Kantaro SUZUKI
  • Patent number: 8246907
    Abstract: An automatic analyzer and an automatic analyzing system to identify samples and reagents used in the analyzer and members used in measurement of at least two objects in common: system reagents or buffer solution; sensor parts; probes; nozzles; chips; dispensing cups; tubes; ISE electrodes; detectors; deionized water; and waste, and to unify management of identification information thereof and a measurement result.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 21, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Noriko Maeda, Kyoko Imai, Taku Sakazume, Yukie Tokiwa, Kantaro Suzuki