Patents by Inventor L. Richard Carley

L. Richard Carley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11569897
    Abstract: Disclosed herein is an innovative multi-layer hybrid/digital MIMO architecture that comprises single-stream or fully-connected (FC) multi-stream beamforming tiles (with RF complex-weights) in the first layer, followed by a fully connected (analog/digital) baseband layer. This architecture overcomes the complexity versus spectral-efficiency tradeoffs of existing hybrid MIMO architectures and enables MIMO stream/user scalability, superior energy-efficiency, and spatial-processing flexibility.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 31, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Jeyanandh Paramesh, Susnata Mondal, L. Richard Carley
  • Publication number: 20210194565
    Abstract: Disclosed herein is an innovative multi-layer hybrid/digital MIMO architecture that comprises single-stream or fully-connected (FC) multi-stream beamforming tiles (with RF complex-weights) in the first layer, followed by a fully connected (analog/digital) baseband layer. This architecture overcomes the complexity versus spectral-efficiency tradeoffs of existing hybrid MIMO architectures and enables MIMO stream/user scalability, superior energy-efficiency, and spatial-processing flexibility.
    Type: Application
    Filed: February 1, 2021
    Publication date: June 24, 2021
    Inventors: Jeyanandh Paramesh, Susnata Mondal, L. Richard Carley
  • Patent number: 9362880
    Abstract: Methods that create an array of BAW resonators by patterning a mass load layer to control the resonant frequency of the resonators and resonators formed thereby, are disclosed. Patterning the surface of a mass load layer and introducing apertures with dimensions smaller than the acoustic wavelength, or dimpling the mass load layer, modifies the acoustic path length of the resonator, thereby changing the resonant frequency of the device. Patterns of variable density allow for further tuning the resonators and for individualized tuning of a resonator in an array of resonators. Patterning a reflowable material for the mass load layer, thereby providing a variable pattern density and distribution followed by elevating the temperature of the mass load layer above its melting point causes the material to liquefy and fill into the apertures to redistribute the mass load layer, thereby, upon subsequent cooling, providing resonators with a predetermined desired resonant frequency.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: June 7, 2016
    Inventors: Rajarishi Sinha, L. Richard Carley, Deok-Yang Kim
  • Patent number: 8981618
    Abstract: A tunable acoustic resonator device has a piezoelectric medium as a first thin film layer and a tunable crystal medium as a second thin film layer. The tunable crystal medium has a first acoustic behavior over an operating temperature range under a condition of relatively low applied stress and a second acoustic behavior under a condition of relatively high applied stress. The acoustic behaviors are substantially different and, consequently, the different levels of applied stress are used to tune the acoustic resonator device. Compared with the tunable resonator device consisting of only tunable crystal medium, a device having both the piezoelectric and tunable crystal medium has advantages such as larger inherent bandwidth and less nonlinearity with AC signals. The device also requires a smaller applied stress (i.e. bias voltage) to achieve the required frequency tuning.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: March 17, 2015
    Assignee: Cymatics Laboratories Corp.
    Inventors: Rajarishi Sinha, L. Richard Carley, Deok-Yang Kim
  • Patent number: 8945970
    Abstract: A method of constructing devices using semiconductor manufacturing processes includes fabricating a device having a movable portion and a fixed portion. The movable portion is connected to the fixed portion only through at least one sacrificial layer. The sacrificial layer is removed in the presence of a force of sufficient strength so as to controllably reposition the movable portion during the release process. The force can be externally applied, generated locally as a result of, for example, the relative positions of the fixed and movable portions, or some combination of the two. Several devices constructed according to such a method are also disclosed.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 3, 2015
    Assignee: Carnegie Mellon University
    Inventor: L. Richard Carley
  • Publication number: 20130335166
    Abstract: A tunable acoustic resonator device has a piezoelectric medium as a first thin film layer and a tunable crystal medium as a second thin film layer. The tunable crystal medium has a first acoustic behavior over an operating temperature range under a condition of relatively low applied stress and a second acoustic behavior under a condition of relatively high applied stress. The acoustic behaviors are substantially different and, consequently, the different levels of applied stress are used to tune the acoustic resonator device. Compared with the tunable resonator device consisting of only tunable crystal medium, a device having both the piezoelectric and tunable crystal medium has advantages such as larger inherent bandwidth and less nonlinearity with AC signals. The device also requires a smaller applied stress (i.e. bias voltage) to achieve the required frequency tuning.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: CYMATICS LABORATORIES CORP.
    Inventors: Rajarishi Sinha, L. Richard Carley, Deok-Yang Kim
  • Publication number: 20130300259
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Applicant: CYMATICS LABORATORIES CORP.
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Patent number: 8531083
    Abstract: A tunable acoustic resonator device has a piezoelectric medium as a first thin film layer and a tunable crystal medium as a second thin film layer. The tunable crystal medium has a first acoustic behavior over an operating temperature range under a condition of relatively low applied stress and a second acoustic behavior under a condition of relatively high applied stress. The acoustic behaviors are substantially different and, consequently, the different levels of applied stress are used to tune the acoustic resonator device. Compared with the tunable resonator device consisting of only tunable crystal medium, a device having both the piezoelectric and tunable crystal medium has advantages such as larger inherent bandwidth and less nonlinearity with AC signals. The device also requires a smaller applied stress (i.e. bias voltage) to achieve the required frequency tuning.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: September 10, 2013
    Assignee: Resonance Semiconductor Corporation
    Inventors: Rajarishi Sinha, L. Richard Carley, Deok-Yang Kim
  • Patent number: 8487511
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 16, 2013
    Assignee: Resonance Semiconductor Corporation
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Patent number: 8373519
    Abstract: A switchable power combiner is disclosed. The switchable power combiner has an output section that is a signal source connected to a transformer section. The transformer section has one or more primaries and a common secondary. The transformer primaries and secondary are acoustically coupled. The primaries or/and the secondary are made of switchable piezoelectric material, such that the acoustic coupling between any primary and the secondary can be switched on or off by electrical control, thereby implementing a switchable power combiner. The transformer secondary is connected to an antenna port. The power amplifier output section is segmented and connected to the transformer primaries. The power amplifier output section has a plurality of power amplifiers and a plurality of reactance elements, either fixed or variable. The switchable power combiner generates different linear load lines by switching on and off the coupling between any primary and the secondary.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: February 12, 2013
    Assignee: Resonance Semiconductor Corporation
    Inventors: Rajarishi Sinha, L. Richard Carley
  • Publication number: 20120274183
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Application
    Filed: July 16, 2012
    Publication date: November 1, 2012
    Applicant: CYMATICS LABORATORIES CORP.
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Patent number: 8222795
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: July 17, 2012
    Assignee: Resonance Semiconductor Corporation
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Publication number: 20120079692
    Abstract: Methods that create an array of BAW resonators by patterning a mass load layer to control the resonant frequency of the resonators and resonators formed thereby, are disclosed. Patterning the surface of a mass load layer and introducing apertures with dimensions smaller than the acoustic wavelength, or dimpling the mass load layer, modifies the acoustic path length of the resonator, thereby changing the resonant frequency of the device. Patterns of variable density allow for further tuning the resonators and for individualized tuning of a resonator in an array of resonators. Patterning a reflowable material for the mass load layer, thereby providing a variable pattern density and distribution followed by elevating the temperature of the mass load layer above its melting point causes the material to liquefy and fill into the apertures to redistribute the mass load layer, thereby, upon subsequent cooling, providing resonators with a predetermined desired resonant frequency.
    Type: Application
    Filed: December 15, 2011
    Publication date: April 5, 2012
    Applicant: Cymatics Laboratories Corp.
    Inventors: Rajarishi Sinha, L. Richard Carley, Deok-Yang Kim
  • Publication number: 20120013224
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 19, 2012
    Applicant: CYMATICS LABORATORIES CORP.
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Patent number: 8030823
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: October 4, 2011
    Assignee: Resonance Semiconductor Corporation
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Publication number: 20100277237
    Abstract: A switchable power combiner is disclosed. The switchable power combiner has an output section that is a signal source connected to a transformer section. The transformer section has one or more primaries and a common secondary. The transformer primaries and secondary are acoustically coupled. The primaries or/and the secondary are made of switchable piezoelectric material, such that the acoustic coupling between any primary and the secondary can be switched on or off by electrical control, thereby implementing a switchable power combiner. The transformer secondary is connected to an antenna port. The power amplifier output section is segmented and connected to the transformer primaries. The power amplifier output section has a plurality of power amplifiers and a plurality of reactance elements, either fixed or variable. The switchable power combiner generates different linear load lines by switching on and off the coupling between any primary and the secondary.
    Type: Application
    Filed: January 26, 2010
    Publication date: November 4, 2010
    Applicant: CYMATICS LABORATORIES CORP.
    Inventors: Rajarishi Sinha, L. Richard Carley
  • Publication number: 20100277034
    Abstract: Methods that create an array of BAW resonators by patterning a mass load layer to control the resonant frequency of the resonators and resonators formed thereby, are disclosed. Patterning the surface of a mass load layer and introducing apertures with dimensions smaller than the acoustic wavelength, or dimpling the mass load layer, modifies the acoustic path length of the resonator, thereby changing the resonant frequency of the device. Patterns of variable density allow for further tuning the resonators and for individualized tuning of a resonator in an array of resonators. Patterning a reflowable material for the mass load layer, thereby providing a variable pattern density and distribution followed by elevating the temperature of the mass load layer above its melting point causes the material to liquefy and fill into the apertures to redistribute the mass load layer, thereby, upon subsequent cooling, providing resonators with a predetermined desired resonant frequency.
    Type: Application
    Filed: March 11, 2010
    Publication date: November 4, 2010
    Inventors: Rajarishi Sinha, L. Richard Carley, Deok-Yang Kim
  • Publication number: 20100187948
    Abstract: A bulk acoustic wave resonator structure that isolates the core resonator from both environmental effects and aging effects. The structure has a piezoelectric layer at least partially disposed between two electrodes. The structure is protected against contamination, package leaks, and changes to the piezoelectric material due to external effects while still providing inertial resistance. The structure has one or more protective elements that limit aging effects to at or below a specified threshold. The resonator behavior is stabilized across the entire bandwidth of the resonance, not just at the series resonance. Examples of protective elements include a collar of material around the core resonator so that perimeter and edge-related environmental and aging phenomena are kept away from the core resonator, a Bragg reflector formed above or below the piezoelectric layer and a cap formed over the piezoelectric layer.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Applicant: Resonance Semiconductor Corporation
    Inventors: Rajarishi Sinha, L. Richard Carley, Louis Caley Chomas, Hugo Safar
  • Patent number: 7724097
    Abstract: A direct digital frequency synthesizer having a multi-modulus divider, a numerically controlled oscillator and a programmable delay generator. The multi-modulus divider receives an input clock having an input pulse frequency fosc and outputs some integer fraction of those pulses at an instantaneous frequency fVp that is some integer fraction (1/P) of the input frequency. The multi-modulus divider selects between at least two ratios of P (1/P or 1/P+1) in response to a signal from the numerically controlled oscillator. The numerically controlled oscillator receives a value which is the accumulator increment (i.e. the number of divided pulse edges) required before an overflow occurs that causes the multi-modulus divider to change divider ratios in response to receiving an overflow signal.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 25, 2010
    Assignee: Resonance Semiconductor Corporation
    Inventors: L. Richard Carley, Anthony L. Tsangaropoulos, Esa Tarvainen
  • Publication number: 20100061143
    Abstract: A method of constructing devices using semiconductor manufacturing processes includes fabricating a device having a movable portion and a fixed portion. The movable portion is connected to the fixed portion only through at least one sacrificial layer. The sacrificial layer is removed in the presence of a force of sufficient strength so as to controllably reposition the movable portion during the release process. The force can be externally applied, generated locally as a result of, for example, the relative positions of the fixed and movable portions, or some combination of the two. Several devices constructed according to such a method are also disclosed.
    Type: Application
    Filed: September 21, 2007
    Publication date: March 11, 2010
    Inventor: L. Richard Carley