Patents by Inventor Larry Baxter

Larry Baxter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10737225
    Abstract: A device for bubbling a gas into a liquid is disclosed. The device comprises a first bubbling apparatus nested inside a second bubbling apparatus. The first bubbling apparatus comprises a gas inlet for receiving the gas and a plurality of first openings for releasing the gas. The second bubbling apparatus at least partially encloses the plurality of first openings of the first bubbling apparatus. The second bubbling apparatus receives the gas from the plurality of first openings. The second bubbling apparatus comprises a plurality of second openings for bubbling the gas into the liquid.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: August 11, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Jacom Chamberlain, Kyler Stitt, David Frankman, Christopher Bence, Aaron Sayre
  • Patent number: 10724891
    Abstract: A vessel with a cavity for measuring level is disclosed. The vessel includes a differential pressure sensor having a first port and a second port, a reference tube that connects the first port of the differential pressure sensor to a bottom portion of the cavity, and an impulse tube that connects the second port of the differential pressure sensor to an impulse tube ending. At least a portion of the impulse tube extends through the cavity and ends at a fluid inlet. The fluid inlet is located at a level above the reference tube.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 28, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Eric Mansfield, Aaron Sayre, David Frankman
  • Patent number: 10722812
    Abstract: A process to prevent fouling using a desublimating heat exchanger is disclosed. An outlet stream from the desublimating heat exchanger may be split into a plurality of parallel streams. The parallel streams may be sent through a plurality of discrete unit operations, and the unit operations may change the temperature of at least one of the parallel streams. Parallel streams of differing temperature may emerge from the unit operations. The parallel streams which are of a similar temperature may be mixed to form a warm stream and a cool stream. The warm stream and the cool stream may be sent to a mixing chamber. A mixed stream of substantially uniform temperature may emerge from the mixing chamber, and the mixed stream may be recycled back to the desublimating heat exchanger. The mixing chamber may be separate from the desublimating heat exchanger, or the parallel streams of differing temperature may be mixed in the desublimating heat exchanger.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: July 28, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Christopher Hoeger
  • Patent number: 10717666
    Abstract: A method for separating solids from liquids is disclosed. A double-roller system is provided. A process fluid is provided to the double-roller system. The process fluid comprises a suspended solid and a process liquid. The suspended solid comprises non-fibrous solid particles. A portion of the process fluid is compressed through the double-roller system to produce a compressed portion of the suspended solid. A product stream and a dilute fluid stream are separated. The product stream comprises a compressed portion of the suspended solid and a first portion of the process liquid. The dilute fluid stream comprises a second portion of the suspended solid and a second portion of the process liquid.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 21, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Nathan Davis
  • Publication number: 20200086238
    Abstract: A method for separating liquids is disclosed. A feed stream is passed into a separator. The feed stream comprising an organic compound, carbon dioxide, and oxides selected from the group consisting of sulfur oxides, nitrogen oxides, ozone and combinations thereof. A portion an organic-rich stream is separated from a portion of an inorganic-rich stream through separation by gravity. The organic-rich stream contains a portion of the organic compound and a first portion of the carbon dioxide. The inorganic-rich stream contains a portion of the oxides and a second portion of the carbon dioxide.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Applicant: Hall Labs LLC
    Inventors: Larry Baxter, Chris Hoeger, Stephanie Burt, Kyler Stitt, Aaron Sayre, Skyler Chamberlain
  • Patent number: 10563916
    Abstract: A device and process for removing vapors from a gas is disclosed. A tower is provided. Sub-cooled pellets are distributed by the solids distributor across a horizontal cross-section of the tower. A process gas, comprising a product vapor, passes through the gas inlet. The product vapor and the sub-cooled pellets comprise the same material. The product vapor and the sub-cooled pellets agglomerate as the product vapor desublimates onto the sub-cooled pellets, forming product pellets and a vapor-depleted gas. A crushing device, a screening device, and a solids heat exchanger are provided. A portion of the product pellets are recycled as sub-cooled pellets to the solids distributor by crushing and screening the portion of the product pellets to the size distribution of the sub-cooled pellets and cooling the portion of the product pellets to produce the sub-cooled pellets.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: February 18, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Aaron Sayre, Christopher Hoeger, Stephanie Burt, David Frankman, Eric Mansfield, Nathan Davis
  • Patent number: 10549229
    Abstract: Devices, systems, and methods for separating a vapor from a gas are disclosed. A gas is passed through a direct-contact exchanger. The exchanger using a contact liquid to cool the gas. The gas comprises a vapor. A portion of the vapor is condensed as the gas passes through the direct-contact exchanger, producing a product liquid and a vapor-depleted gas. The product liquid is immiscible in the contact liquid. The product liquid is gravity settled from the contact liquid such that the contact liquid and the product liquid separate in the direct-contact exchanger.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 4, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Nathan Davis
  • Patent number: 10551120
    Abstract: A method for cryogenic cooling without fouling is disclosed. The method comprises providing a first cryogenic liquid saturated with a dissolved gas; expanding the first cryogenic liquid into a separation vessel, separating into a vapor, a second cryogenic liquid, and a first solid; drawing the vapor into a heat exchanger and the second cryogenic liquid and the first solid out of the separation vessel; cooling the vapor against a coolant through the heat exchanger, causing the vapor to form a third cryogenic liquid and a second solid, the second solid dissolving in the third cryogenic liquid; and combining the second cryogenic liquid and the first solid with the third cryogenic liquid, producing a final cooled slurry. In this manner, the cryogenic cooling is accomplished without fouling.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: February 4, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Nathan Davis
  • Patent number: 10543456
    Abstract: A process for forming a solid product or products is disclosed. The process is provided with n desublimating exchangers. An exchanger E1 being associated with a first exchanger and an exchanger En being associated with an nth exchanger, n representing the number of exchangers. The n exchangers comprise at least one direct-contact exchanger comprising a contact fluid. A process fluid is passed through the n exchangers in order from E1 through En. The process fluid comprises a product component or components. The solid product or products form from the product component or components in the plurality of exchangers by desublimation. The solid product or products are separated from the process fluid. In this manner, a solid product or products is formed.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: January 28, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Christopher Hoeger, Stephanie Burt, Kyler Stitt, Eric Mansfield, Aaron Sayre, David Frankman, Andrew Baxter, Nathan Davis
  • Patent number: 10537843
    Abstract: A process for separating a mixture of components is disclosed. A liquid mixture is provided to a separation vessel substantially near a temperature at which a product component freezes. The liquid mixture comprises the product component and a carrier component. The product component and the carrier component are essentially immiscible substantially near the temperature. The liquid mixture is separated into two or more phases, the two or more phases comprising a product component-rich liquid phase and a product component-depleted liquid phase. In this manner, a mixture of components is separated.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: January 21, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Kyler Stitt, Stephanie Burt, Christopher Hoeger, Eric Mansfield, Nathan Davis
  • Patent number: 10537823
    Abstract: A method for removing carbon dioxide from a carrier liquid using a heat exchanger. A carrier liquid, containing carbon dioxide, is heated through the heat exchanger, causing the carbon dioxide to vaporize. The carrier liquid and the carbon dioxide gas pass to a liquid removal vessel. The carrier liquid is removed and the carbon dioxide gas is compressed. The compressed carbon dioxide gas is provided to the heat exchanger, cooling the carbon dioxide gas opposite the carrier liquid, producing a carbon dioxide liquid.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: January 21, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Christopher Hoeger, Eric Mansfield, Kyler Stitt, Stephanie Burt, Nathan Davis
  • Patent number: 10539382
    Abstract: An apparatus comprising a heat exchanger and one or more induction heating elements is disclosed. The heat exchanger comprises a coolant side conduit and a process side conduit, the process side conduit being susceptible to fouling by at least partial desublimation, condensation, crystallization, deposition, or combinations thereof of a fouling component of a circulating process fluid. An electrically conductive first metal is disposed adjacent to the process side conduit. The one or more induction heating elements are disposed proximate to the heat exchanger. The one or more induction heating elements are connected to a source of electrical current. When the electrical current flows through the induction heating elements, eddy currents are induced in the first metal, heating the first metal such that the fouling component sublimates, melts, absorbs, or a combination thereof into the circulating process fluid.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: January 21, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Aaron Sayre, Eric Mansfield, Nathan Davis
  • Patent number: 10537828
    Abstract: A method for preventing fouling of a demister is disclosed. A process fluid is provided into a vessel. A gas is provided to a gas inlet of the vessel. The gas comprises a component that desublimates, crystallizes, solidifies, reacts, or a combination thereof, in the process fluid, forming a first solid. The gas is passed through the process fluid, the component of the gas forming the first solid, resulting in a component-depleted gas. The component-depleted gas is passed out of the process fluid, causing splashing or spurting of the process fluid and the first solid. The diverter section is provided between the demister and the gas inlet, the diverter section comprising a physical obstruction preventing the process fluid and the first solid from splashing or spurting onto the demister. In this manner, fouling of the demister is prevented.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: January 21, 2020
    Assignee: Sustainable Energy Solutions, LLC
    Inventors: Larry Baxter, Andrew Baxter, Kyler Stitt, Aaron Sayre, Stephanie Burt, David Frankman, Nathan Davis
  • Publication number: 20200018546
    Abstract: A method is disclosed for separating components of a gas. A feed gas stream is cooled in the first vessel. The feed gas stream comprises methane, carbon dioxide, and a secondary component. A first portion of the secondary component condenses, desublimates, or a combination thereof to form a primary stream, resulting in a first depleted gas stream. The first depleted gas stream is cooled in a condensing exchanger such that a first portion of the methane condenses as a first liquid methane stream, resulting in a second depleted gas stream. The second depleted gas stream is cooled in the second vessel such that a first portion of the carbon dioxide desublimates to form a solid product stream, resulting in a third depleted gas stream.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Applicant: NewVistas Capital, LLC
    Inventors: Larry Baxter, Chris Hoeger, Jacom Chamberlain, Kyler Stitt
  • Publication number: 20200018547
    Abstract: A method is disclosed for separating components of a gas. A feed gas stream is passed into a vessel. The feed gas stream includes methane, carbon dioxide, and water. The feed gas stream is cooled in the vessel such that a portion of the methane and a portion of the carbon dioxide condense and a portion of the water desublimates, resulting in a product stream and a depleted gas stream exiting the vessel.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Applicant: NewVistas Capital, LLC
    Inventors: Larry Baxter, Chris Hoeger, Jacom Chamberlain, Kyler Stitt
  • Publication number: 20200018545
    Abstract: The disclosure provides a method for separating components of a gas. A feed gas stream is cooled in a first vessel. The feed gas stream includes methane, water, carbon dioxide, and Natural Gas Liquids. The feed gas stream is cooled in a first vessel. A portion of the water condenses to form a primary liquid stream, resulting in a first depleted gas stream, which is cooled in a second vessel. A portion of the NGLs condense to form a secondary liquid stream, resulting in a second depleted gas stream, which is cooled in a condensing exchanger. A first portion of the methane condenses to form a liquid methane stream, resulting in a third depleted gas stream, which is cooled in a third vessel. A portion of the carbon dioxide condenses, desublimates, or condenses and desublimates as a final product stream, also resulting in a fourth depleted gas stream.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Applicant: NewVistas Capital, LLC
    Inventors: Larry Baxter, Chris Hoeger, Jacom Chamberlain, Kyler Stitt
  • Patent number: 10533796
    Abstract: A method for thickening a cryogenic slurry is disclosed. The method comprises providing a cryogenic slurry flow path, a cryogenic liquid discharge path, and a filter medium between the cryogenic slurry flow path and the cryogenic liquid discharge path. The cryogenic slurry comprises a solid and a cryogenic liquid. The cryogenic slurry is fed into the cryogenic slurry flow path, generally tangential to the filter medium. This causes a portion of the cryogenic liquid to cross the filter medium into the cryogenic liquid discharge path as a cryogenic liquid discharge and the cryogenic slurry to thicken to produce a thickened slurry. The filter medium comprises a cryogenically-stable material such that adsorption of gases is inhibited, deposition of solids is prevented, and temperature-change induced expansion and contraction of the filter medium is optimized.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: January 14, 2020
    Inventors: Larry Baxter, Eric Mansfield, Kyler Stitt, David Frankman, Skyler Chamberlain, Nathan Davis, Stephanie Burt, Steven Malone
  • Patent number: 10533813
    Abstract: A method for semi-continuous operation of a heat exchange process that alternates between two heat exchangers is disclosed. The method comprises, first, providing a contact liquid to a first heat exchanger while the second heat exchanger is on standby. The contact liquid contains a dissolved gas, an entrained gas, or residual small particles that foul the first heat exchanger by condensing or depositing as a foulant onto the first heat exchanger, restricting free flow of the contact liquid. Second, detecting a pressure drop across the first heat exchanger. Third, switching flows of the coolant from the first to the second heat exchanger. Fourth, removing the foulant from the now standby first heat exchanger by providing heat to the heat exchanger, passing a non-reactive gas through the heat exchanger, or a combination thereof. In this manner, the heat exchange process operates semi-continuously.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 14, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Eric Mansfield, Christopher Hoeger, Kyler Stitt, David Frankman, Stephanie Burt, Aaron Sayre, Nathan Davis
  • Patent number: 10533812
    Abstract: Devices, systems, and methods for cooling a gas is disclosed. A slurry is passed through a droplet generating device to produce droplets of the slurry. The slurry comprises a contact liquid and solids. A melting point of the solids is higher than a vaporization point of the contact liquid. A carrier gas is passed across the droplets to exchange heat between the carrier gas and the droplets. At least a portion of the heat transferred to the droplets melts the solids.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 14, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Jacom Chamberlain, Nathan Davis
  • Patent number: 10465984
    Abstract: Condensable vapors such as carbon dioxide are separated from light gases in a process stream. The systems and methods employ a circulating fluidized particle bed cooled by an out-bed heat exchanger to desublimate the solid form of condensable vapors from the process stream. Gas and solids may be sorted in a separator, and the solids may then be subcooled in a heat exchanger. The condensable vapors may be condensed on the bed particles or in the heat exchanger while the light gases from the process stream, which are not condensed, form a separated light-gas stream.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 5, 2019
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Andrew Baxter, Eric Mansfield, Aaron Sayre, Kyler Stitt, Christopher Hoeger, Stephanie Burt, David Frankman