Patents by Inventor Larry D. Kinsman

Larry D. Kinsman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8981511
    Abstract: A multi-chip package may include an image sensor chip, an image signal processor (ISP) chip, a cover glass, and a package substrate. The ISP chip may be placed on the substrate. The image sensor chip may be placed over the ISP chip. An adhesive film may be formed between the ISP and image sensor chips. A cover glass may be suspended above the image sensor chip. The ISP chip and the image sensor chip may be wire bonded to the substrate. The multi-chip package may be hermetically sealed using a liquid compound or a dam structure. During normal operation, the ISP chip sends control signals to the image sensor chip via a first set of wire bond members and conductive traces in the substrate while the image sensor chip sends output signals to the ISP chip via a second set of wire bond terminals and conductive traces in the substrate.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: March 17, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Larry D. Kinsman, Chi-Yao Kuo
  • Publication number: 20130221470
    Abstract: A multi-chip package may include an image sensor chip, an image signal processor (ISP) chip, a cover glass, and a package substrate. The ISP chip may be placed on the substrate. The image sensor chip may be placed over the ISP chip. An adhesive film may be formed between the ISP and image sensor chips. A cover glass may be suspended above the image sensor chip. The ISP chip and the image sensor chip may be wire bonded to the substrate. The multi-chip package may be hermetically sealed using a liquid compound or a dam structure. During normal operation, the ISP chip sends control signals to the image sensor chip via a first set of wire bond members and conductive traces in the substrate while the image sensor chip sends output signals to the ISP chip via a second set of wire bond terminals and conductive traces in the substrate.
    Type: Application
    Filed: July 23, 2012
    Publication date: August 29, 2013
    Inventors: Larry D. Kinsman, Chi-Yao Kuo
  • Patent number: 8097895
    Abstract: Electronic device packages comprise transparent substrates covering an active surface of an optically interactive electronic device. In some embodiments, the optically interactive electronic device is bonded to conductive traces formed directly on the transparent substrate. In other embodiments, a secondary substrate comprising a plurality of conductive traces is disposed between the transparent substrate and the optically interactive electronic device.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 17, 2012
    Assignee: Round Rock Research, LLC
    Inventor: Larry D. Kinsman
  • Publication number: 20110261628
    Abstract: A 256 Meg dynamic random access memory is comprised of a plurality of cells organized into individual arrays, with the arrays being organized into 32 Meg array blocks, which are organized into 64 Meg quadrants. Sense amplifiers are positioned between adjacent rows in the individual arrays while row decoders are positioned between adjacent columns in the individual arrays. In certain of the gap cells, multiplexers are provided to transfer signals from I/O lines to datalines. A data path is provided which, in addition to the foregoing, includes array I/O blocks, responsive to the datalines from each quadrant to output data to a data read mux, data buffers, and data driver pads. The write data path includes a data in buffer and data write muxes for providing data to the array I/O blocks. A power bus is provided which minimizes routing of externally supplied voltages, completely rings each of the array blocks, and provides gridded power distribution within each of the array blocks.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 27, 2011
    Applicant: Round Rock Research, LLC
    Inventors: Brent Keeth, Layne G. Bunker, Scott J. Demer, Ronald L. Taylor, John S. Mullin, Raymond J. Beffa, Frank F. Ross, Larry D. Kinsman
  • Patent number: 7969810
    Abstract: A 256 Meg dynamic random access memory is comprised of a plurality of cells organized into individual arrays, with the arrays being organized into 32 Meg array blocks, which are organized into 64 Meg quadrants. Sense amplifiers are positioned between adjacent rows in the individual arrays while row decoders are positioned between adjacent columns in the individual arrays. In certain of the gap cells, multiplexers are provided to transfer signals from I/O lines to datalines. A data path is provided which, in addition to the foregoing, includes array I/O blocks, responsive to the datalines from each quadrant to output data to a data read mux, data buffers, and data driver pads. The write data path includes a data in buffer and data write muxes for providing data to the array I/O blocks. A power bus is provided which minimizes routing of externally supplied voltages, completely rings each of the array blocks, and provides gridded power distribution within each of the array blocks.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Brent Keeth, Layne G. Bunker, Scott J. Demer, Ronald L Taylor, John S. Mullin, Raymond J. Beffa, Frank F. Ross, Larry D. Kinsman
  • Publication number: 20110101514
    Abstract: A vertically mountable semiconductor device assembly including a semiconductor device and a mechanism for attaching the semiconductor device to a carrier substrate. The semiconductor device has each of its bond pads disposed proximate a single edge thereof. Preferably, at least a portion of the semiconductor device is exposed. An alignment device is attached to a carrier substrate. A mounting element on the vertically mountable semiconductor device package engages the alignment device to interconnect the semiconductor device and the alignment device. Preferably, the alignment device secures the vertically mountable semiconductor device package perpendicular relative to the carrier substrate. The distance between the bond pads and corresponding terminals on the carrier substrate is very small in order to reduce impedance. The vertically mountable semiconductor device package may also be readily user-upgradeable.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 5, 2011
    Inventors: Larry D. Kinsman, Jerry M. Brooks, Warren M. Farnworth, Walter L. Moden, Terry R. Lee
  • Patent number: 7871859
    Abstract: A vertically mountable semiconductor device assembly including a semiconductor device and a mechanism for attaching the semiconductor device to a carrier substrate. The semiconductor device has each of its bond pads disposed proximate a single edge thereof. Preferably, at least a portion of the semiconductor device is exposed. An alignment device is attached to a carrier substrate. A mounting element on the vertically mountable semiconductor device package engages the alignment device to interconnect the semiconductor device and the alignment device. Preferably, the alignment device secures the vertically mountable semiconductor device package perpendicular relative to the carrier substrate. The distance between the bond pads and corresponding terminals on the carrier substrate is very small in order to reduce impedance. The vertically mountable semiconductor device package may also be readily user-upgradable.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: January 18, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Larry D. Kinsman, Jerry M. Brooks, Warren M. Farnworth, Walter L. Moden, Terry R. Lee
  • Patent number: 7829991
    Abstract: An apparatus package for high-temperature thermal applications for ball grid array semiconductor devices and a method of packaging ball grid array semiconductor devices.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Walter L. Moden, David J. Corisis, Leonard E. Mess, Larry D. Kinsman
  • Patent number: 7727858
    Abstract: Channels are formed that pass through an active surface of a semiconductor substrate to provide isolation between adjacent active surface regions defining individual die locations. Bond pads on the substrate are bumped with intermediate conductive elements, after which a material used to encapsulate the active surface is applied, filling the channels and covering exposed peripheral edges of the active surface integrated circuitry. The encapsulant is then planarized to expose the ends of the bumps. External conductive elements such as solder balls are then formed on the exposed bump ends. The semiconductor wafer is diced in alignment with the channels to singulate the semiconductor devices, the encapsulant in the channels keeping the edges of the integrated circuitry substantially hermetically sealed.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Larry D. Kinsman, Salman Akram
  • Publication number: 20100052086
    Abstract: Electronic device packages comprise transparent substrates covering an active surface of an optically interactive electronic device. In some embodiments, the optically interactive electronic device is bonded to conductive traces formed directly on the transparent substrate. In other embodiments, a secondary substrate comprising a plurality of conductive traces is disposed between the transparent substrate and the optically interactive electronic device.
    Type: Application
    Filed: November 10, 2009
    Publication date: March 4, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Larry D. Kinsman
  • Patent number: 7638813
    Abstract: The present invention provides flip-chip packaging for optically interactive devices such as image sensors and methods of assembly. In a first embodiment of the invention, conductive traces are formed directly on the second surface of a transparent substrate and an image sensor chip is bonded to the conductive traces. Discrete conductive elements are attached to the conductive traces and extend below a back surface of the image sensor chip. In a second embodiment, a secondary substrate having conductive traces formed thereon is secured to the transparent substrate. In a third embodiment, a backing cap having a full array of attachment pads is attached to the transparent substrate of the first embodiment or the secondary substrate of the second embodiment. In a fourth embodiment, the secondary substrate is a flex circuit having a mounting portion secured to the second surface of the transparent substrate and a backing portion bent over adjacent to the back surface of the image sensor chip.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: December 29, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Larry D. Kinsman
  • Patent number: 7629686
    Abstract: An apparatus for making a semiconductor assembly and, specifically, interconnecting a semiconductor die to a carrier substrate. The carrier substrate includes a first surface and a second surface with at least one opening therethrough. The die includes an active surface and a back surface, wherein the die is attached face down to the first surface of the carrier substrate with conductive bumps therebetween. In addition, a plurality of bond wires is attached through the at least one opening in the carrier substrate between the active surface of the die and the second surface of the carrier substrate. With this arrangement, both the conductive bumps and the bond wires share in the electrical interconnection between the die and the carrier substrate, thereby allowing more space for bond pads to interconnect with bond wires and/or allowing for smaller die sizes.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: December 8, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Larry D. Kinsman
  • Publication number: 20090245009
    Abstract: A 256 Meg dynamic random access memory is comprised of a plurality of cells organized into individual arrays, with the arrays being organized into 32 Meg array blocks, which are organized into 64 Meg quadrants. Sense amplifiers are positioned between adjacent rows in the individual arrays while row decoders are positioned between adjacent columns in the individual arrays. In certain of the gap cells, multiplexers are provided to transfer signals from I/O lines to datalines. A data path is provided which, in addition to the foregoing, includes array I/O blocks, responsive to the datalines from each quadrant to output data to a data read mux, data buffers, and data driver pads. The write data path includes a data in buffer and data write muxes for providing data to the array I/O blocks. A power bus is provided which minimizes routing of externally supplied voltages, completely rings each of the array blocks, and provides gridded power distribution within each of the array blocks.
    Type: Application
    Filed: March 6, 2009
    Publication date: October 1, 2009
    Inventors: Brent Keeth, Layne G. Bunker, Scott J. Demer, Ronald L. Taylor, John S. Mullin, Raymond J. Beffa, Frank F. Ross, Larry D. Kinsman
  • Patent number: 7569418
    Abstract: A method for securing a semiconductor device to a carrier substrate includes inserting a semiconductor device with a plurality of stub contacts extending from a bottom edge thereof into a receptacle of an alignment device associated with the carrier substrate. Upon attachment of the alignment device to a carrier substrate and insertion of a vertically mountable semiconductor device into the receptacle, the semiconductor device is biased so as to establish and maintain electrical communication between the semiconductor device and the carrier substrate.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Larry D. Kinsman, Walter L. Moden, Warren M. Farnworth
  • Patent number: 7541658
    Abstract: An image sensor package and methods for simultaneously fabricating a plurality of such packages. A layer of barrier material comprising a matrix of raised walls is formed around chip attachment areas located in an array on a carrier substrate to create chip cavities. Image sensor chips are wire bonded within the chip cavities, and a unitary transparent cover is sealed in place over the entire assembly. The resultant image sensor package array is then singulated along lines running between the chip attachment areas and in parallel to the raised walls to provide individual image sensor packages. The layer of barrier material may be formed directly on the carrier substrate by molding methods or by depositing a series of curable layers of liquid or flowable material in a stacked fashion. Alternatively, the layer of barrier material may be preformed as a unitary frame and then secured to the carrier substrate.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: June 2, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Larry D. Kinsman
  • Publication number: 20080296781
    Abstract: The present disclosure suggests various microelectronic component assembly designs and methods for manufacturing microelectronic component assemblies. In one particular implementation, a microelectronic component assembly includes a microelectronic component mounted to a substrate. The substrate carries a plurality of bond pads at a location substantially coplanar with a terminal surface of the microelectronic component. This enables a smaller package to be produced by moving the bond pads laterally inwardly toward the periphery of the microelectronic component.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 4, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Larry D. Kinsman
  • Patent number: 7443038
    Abstract: The present invention provides flip-chip packaging for optically interactive devices such as image sensors and methods of assembly. In a first embodiment of the invention, conductive traces are formed directly on the second surface of a transparent substrate and an image sensor chip is bonded to the conductive traces. Discrete conductive elements are attached to the conductive traces and extend below a back surface of the image sensor chip. In a second embodiment, a secondary substrate having conductive traces formed thereon is secured to the transparent substrate. In a third embodiment, a backing cap having a full array of attachment pads is attached to the transparent substrate of the first embodiment or the secondary substrate of the second embodiment. In a fourth embodiment, the secondary substrate is a flex circuit having a mounting portion secured to the second surface of the transparent substrate and a backing portion bent over adjacent to the back surface of the image sensor chip.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: October 28, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Larry D. Kinsman
  • Patent number: 7408255
    Abstract: Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays are disclosed. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: August 5, 2008
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Walter L. Moden, Leonard E. Mess, Larry D. Kinsman
  • Patent number: 7400032
    Abstract: Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays are disclosed. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: July 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Walter L. Moden, Leonard E. Mess, Larry D. Kinsman
  • Patent number: 7396702
    Abstract: Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays are disclosed. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Walter L. Moden, Leonard E. Mess, Larry D. Kinsman