Patents by Inventor Lawrence A. Clevenger

Lawrence A. Clevenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210170399
    Abstract: 3D nanochannel interleaved devices for molecular manipulation are provided. In one aspect, a method of forming a device includes: forming a pattern on a substrate of alternating mandrels and spacers alongside the mandrels; selectively removing the mandrels from a front portion of the pattern forming gaps between the spacers; selectively removing the spacers from a back portion of the pattern forming gaps between the mandrels; filling i) the gaps between the spacers with a conductor to form first electrodes and ii) the gaps between the mandrels with the conductor to form second electrodes; and etching the mandrels and the spacers in a central portion of the pattern to form a channel (e.g., a nanochannel) between the first electrodes and the second electrodes, wherein the first electrodes and the second electrodes are offset from one another across the channel, i.e., interleaved. A device formed by the method is also provided.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Inventors: Lawrence A. Clevenger, Kangguo Cheng, Donald Canaperi, Shawn Peter Fetterolf
  • Patent number: 11024551
    Abstract: A method is presented for forming a multi-level of interconnects underneath a complementary metal oxide semiconductor (CMOS) device. The method includes forming a stack including alternating layers of a semiconductor material and a first conductive material, patterning vias in the stack to define multiple stacks, depositing a first block material within each of the vias, forming a series of first block materials within a first via, forming a series of second block materials within a second via, the first and second vias being on opposed ends of a stack of the multiple stacks, and performing vertical metallization between the first block material and the series of first block materials in the first via, and between the first block material and the series of second block materials in the second via.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: June 1, 2021
    Assignee: International Business Machines Corporation
    Inventors: Hsueh-Chung Chen, Lawrence A. Clevenger, Daniel James Dechene, Somnath Ghosh, Carl Radens
  • Publication number: 20210159211
    Abstract: Techniques are provided for constructing multi-chip package structures using pre-positioned interconnect bridge devices that are fabricated on a bridge wafer. For example, integrated circuit chips are mounted to a bridge wafer which is formed to have a plurality of pre-positioned interconnect bridge devices, wherein at least two integrated circuit chips are joined to each interconnect bridge device, and wherein each interconnect bridge device includes wiring to provide chip-to-chip connections between the integrated circuit chips connected to the interconnect bridge device. A wafer-level molding layer is formed on the bridge wafer to encapsulate the integrated circuit chips mounted to the bridge wafer. The interconnect bridge devices are released from the bridge wafer. The wafer-level molding layer is then diced to form a plurality of individual multi-chip modules.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Joshua M. Rubin, Steven Lorenz Wright, Lawrence A. Clevenger
  • Publication number: 20210159117
    Abstract: A semiconductor device includes a first interconnect structure formed in an Mx level of the semiconductor device, the Mx level includes a third interlevel dielectric layer located above a second capping layer, a first trench within the third interlevel dielectric layer extending through the second capping layer to expose a top surface of a contact structure located below the second capping layer, the contact structure is located within a second interlevel dielectric layer, a second metal liner conformally deposited within the first trench, and a first seed layer conformally deposited above the second metal liner, the first seed layer includes a metal manganese film. A first thermal annealing process is conducted on the semiconductor device to form a first barrier liner underneath the second metal liner to prevent diffusion of conductive metals.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Junli Wang, Hsueh-Chung Chen, Su Chen Fan, Yann Mignot, Lawrence A. Clevenger
  • Patent number: 11018090
    Abstract: A semiconductor device and method for forming the semiconductor device are described. The method includes recessing a device pad to below a top surface of an interconnect layer and depositing a cap in the recess over the device pad. A topography assist layer is formed over each of at least one alignment mark using a selective deposition process that deposits material on conductive material of the at least one alignment mark selective to the metal nitride of the device pad such that a top surface of the topography assist feature is higher than a top surface of the cap. Device layers are deposited conformally over the interconnect layer such that the topography assist layer causes a topographical feature in a top surface of the deposited device layers, the topographical feature being vertically aligned with the topography assist layer. The device pad is aligned according to the topographical feature.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: May 25, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Rizzolo, Chih-Chao Yang, Lawrence A. Clevenger, Benjamin D. Briggs
  • Patent number: 11018007
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 25, 2021
    Assignee: Tessera, Inc.
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20210143062
    Abstract: A method of forming fully aligned top vias is provided. The method includes forming a fill layer on a conductive line, wherein the fill layer is adjacent to one or more vias. The method further includes forming a spacer layer selectively on the exposed surface of the fill layer, wherein the top surface of the one or more vias is exposed after forming the spacer layer. The method further includes depositing an etch-stop layer on the exposed surfaces of the spacer layer and the one or more vias, and forming a cover layer on the etch-stop layer.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 13, 2021
    Inventors: Nicholas Anthony Lanzillo, Koichi Motoyama, Somnath Ghosh, Christopher J. Penny, Robert Robison, Lawrence A. Clevenger
  • Patent number: 11004790
    Abstract: A method of forming an interconnect to an electrical device is provided. The structure produced by the method may include a plurality of metal lines in a region of a substrate positioned in an array of metal lines all having parallel lengths; and a plurality of air gaps between the metal lines in a same level as the metal lines, wherein an air gap is present between each set of adjacent metal lines. A plurality of interconnects may be present in electrical communication with said plurality of metal lines, wherein an exclusion zone for said plurality of interconnects is not present in said array of metal lines.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Christopher J. Penny, Michael Rizzolo
  • Patent number: 11004736
    Abstract: A method for fabricating a multi-layered wafer includes depositing a metal liner following by a seed layer including a metal in a trench arranged in an inter-metal dielectric (IMD). An end of the trench contacts a metal via of an interconnect structure. Heat is applied to drive the metal of the seed layer into the IMD and form a barrier layer along a sidewall of the trench.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hsueh-Chung Chen, Junli Wang, Somnath Ghosh, Chih-Chao Yang, Lawrence A. Clevenger
  • Publication number: 20210134728
    Abstract: A multi-chip package structure includes a chip interconnect bridge, a fan-out redistribution layer structure, a first integrated circuit chip, and a second integrated circuit chip. The chip interconnect bridge includes contact pads disposed on a top-side of the chip interconnect bridge. The fan-out redistribution layer structure is disposed around sidewalls of the chip interconnect bridge and over the top-side of the chip interconnect bridge. The first and second integrated circuit chips are direct chip attached to an upper surface of the fan-out redistribution layer structure, wherein the fan-out redistribution layer structure includes input/output connections between the contact pads on the top-side of the chip interconnect bridge and the first and second integrated circuit chips.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Joshua M. Rubin, Steven Lorenz Wright, Lawrence A. Clevenger
  • Publication number: 20210134724
    Abstract: Techniques are provided for constructing multi-chip package structures. For example, a multi-chip package structure includes a package substrate, an interconnect bridge device, a first chip package, and a second chip package. The first chip package includes a first redistribution layer structure, and a first integrated circuit chip connected to the first redistribution layer structure. The first redistribution layer structure is connected to the interconnect bridge device and to the package substrate. The second chip package includes a second redistribution layer structure, and a second integrated circuit chip connected to the second redistribution layer structure. The second redistribution layer structure is connected to the interconnect bridge device and to the package substrate. The interconnect bridge device includes wiring to provide package-to-package connections between the first and second chip packages.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 6, 2021
    Inventors: Joshua M. Rubin, Kamal K. Sikka, Steven Lorenz Wright, Lawrence A. Clevenger
  • Publication number: 20210134664
    Abstract: Embodiments of the present invention are directed to fabrication methods and resulting structures for subtractively forming a top via using a hybrid metallization scheme. In a non-limiting embodiment of the invention, a surface of a conductive line is recessed below a topmost surface of a first liner layer. The first liner layer can be positioned between the conductive line and a dielectric layer. A top via layer is formed on the recessed surface of the conductive line and a hard mask is formed over a first portion of the top via layer. A second portion of the top via layer is removed. The remaining first portion of the top via layer defines the top via. The conductive line can include copper while the top via layers can include ruthenium or cobalt.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 6, 2021
    Inventors: Koichi Motoyama, Nicholas Anthony Lanzillo, Christopher J. Penny, SOMNATH GHOSH, Robert ROBISON, Lawrence A. Clevenger
  • Patent number: 10998193
    Abstract: Integrated chips and methods of forming the same include forming a first set of sidewall spacers on a first mandrel at first vertical level. The first mandrel is etched away. A second set of sidewall spacers is formed on a second mandrel at a second vertical level. A portion of the second set of sidewall spacers vertically overlaps with a portion of the first set of sidewall spacers. The second mandrel is etched away. A first hardmask layer is etched, using the vertically overlapping first set of sidewall spacers and second set of sidewall spacers as a mask.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy Mathew Philip, Somnath Ghosh, Daniel James Dechene, Robert Robison, Lawrence A. Clevenger
  • Patent number: 10991619
    Abstract: A method for fabricating a semiconductor device to account for misalignment includes forming a top via on a first conductive line formed on a substrate, forming liners each using a first dielectric material, including forming first and second liners to a first height along sidewalls of the top via, forming dielectric layers, including forming first and second dielectric layers on the first conductive line to the first height and adjacent to the first and second liners, respectively, recessing the top via to a second height, and forming an additional dielectric layer on the recessed top via to the first height using a second dielectric material. The first and second dielectric materials are selected to compensate for potential misalignment between the first conductive line and the top via.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chen Zhang, Lawrence A. Clevenger, Benjamin D. Briggs, Brent A. Anderson, Chih-Chao Yang
  • Patent number: 10985063
    Abstract: A first TS is coupled to first S/D over first fin, second TS coupled to second S/D over first fin, third TS coupled to third S/D over second fin, fourth TS coupled to fourth S/D over second fin, gate metal over first and second fins, and gate cap over gate metal. First TS cap is on first TS, second TS cap on second TS, third TS cap on third TS, and fourth TS cap on fourth TS. ILD is formed on top of gate cap and first through fourth TS caps. First opening is through ILD and second TS cap such that part of gate metal is exposed, after removing part of gate cap. Second opening is through ILD to expose another part of gate metal. Combined gate metal contact and local metal connection is formed in first opening and individual gate metal contact is formed in second opening.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 20, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Lawrence A. Clevenger, Carl Radens, Junli Wang, John H. Zhang
  • Publication number: 20210111069
    Abstract: Embodiments of the present invention are directed to fabrication method and resulting structures for forming interconnects using a conductive spacer configured to prevent a short between a via and an adjacent line. In a non-limiting embodiment of the invention, a first conductive line and a second conductive line are formed in a metallization layer. A conductive spacer is formed on the first conductive line and a conductive via is formed on a surface of the conductive spacer. The conductive via is positioned such that the conductive spacer is between the first conductive line and the conductive via. A height of the conductive spacer is selected to provide a predetermined distance from the conductive via to the second conductive line. The predetermined distance from the conductive via to the second conductive line is sufficient to prevent a short between the conductive via and the second conductive line.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Koichi Motoyama, Cornelius Brown Peethala, Christopher J. Penny, Nicholas Anthony Lanzillo, Lawrence A. Clevenger
  • Publication number: 20210111066
    Abstract: A method includes applying a first metallic layer having a first metallic material onto a substrate of a semiconductor component. The method further includes removing portions of the first metallic layer to form a first metallic line. The method further includes creating an opening in the first metallic line. The method also includes depositing a dielectric material on the substrate. The method further includes forming at least one trench in the dielectric material. The method also includes depositing a second metallic material within the at least one trench to form a second metallic line. At least the first and second metallic lines and the dielectric material form an interconnect structure of the semiconductor component.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Somnath Ghosh, Hsueh-Chung Chen, Yongan Xu, Yann Mignot, Lawrence A. Clevenger
  • Publication number: 20210110727
    Abstract: A computer-implemented method, a computer program product, and an incremental learning system are provided for language learning and speech enhancement. The method includes transforming acoustic utterances uttered by an individual into textual representations thereof, by a voice-to-language processor configured to perform speech recognition. The method further includes accelerating speech development in the individual, by an incremental learning system that includes the voice-to-language processor and that processes the acoustic utterances using natural language processing and analytics to determine and incrementally provide new material to the individual for learning. Responsive to the individual being a baby, the voice-to-language processor discretizes baby babbling to consonants, letters, and words.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Mahmoud Amin, Zhenxing Bi, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Christopher J. Penny, Krishna R. Tunga, Loma Vaishnav
  • Patent number: 10978343
    Abstract: An interconnect structure includes an interlayer dielectric (ILD) having a cavity extending therethrough along a first direction. A first electrically conductive strip is formed on a substrate and within the cavity. The first electrically conductive strip extends along the first direction and across an upper surface of the substrate. A second electrically conductive strip is on an upper surface of the ILD and extends along a second direction opposite the first direction. A fully aligned via (FAV) extends between the first and second electrically conductive strips such that all sides of the FAV are co-planar with opposing sides of the first electrically conductive strip and opposing sides of the second electrically conductive strip thereby providing a FAV that is fully aligned with the first electrically conductive strip and the second electrically conductive strip.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chanro Park, Nicholas Anthony Lanzillo, Christopher J. Penny, Lawrence A. Clevenger, Balasubramanian Pranatharthiharan
  • Patent number: 10978393
    Abstract: A semiconductor device is provided and includes first and second dielectrics, first and second conductive elements, a self-formed-barrier (SFB) and a liner. The first and second dielectrics are disposed with one of first-over-second dielectric layering and second-over-first dielectric layering. The first and second conductive elements are respectively suspended at least partially within a lower one of the first and second dielectrics and at least partially within the other one of the first and second dielectrics. The self-formed-barrier (SFB) is formed about a portion of one of the first and second conductive elements which is suspended in the second dielectric. The liner is deposited about a portion of the other one of the first and second conductive elements which is partially suspended in the first dielectric.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: April 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Takeshi Nogami, Christopher J. Penny, Michael Rizzolo