Patents by Inventor Lawrence A. Clevenger

Lawrence A. Clevenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180076086
    Abstract: A method of forming a protective liner between a gate dielectric and a gate contact. The method may include; forming a finFET having a replacement metal gate (RMG) on one or more fins, the RMG includes a gate dielectric wrapped around a metal gate, an outer liner is on the sidewalls of the gate dielectric and on the fins; forming a gate contact trench by recessing the gate dielectric and the outer liner below a top surface of the metal gate in a gate contact region; forming a protective trench by further recessing the gate dielectric below a top surface of the outer liner; filling the protective trench with a protective liner; and forming a gate contact in the gate contact trench, where the protective liner is between the gate dielectric and the gate contact.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 15, 2018
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Junli Wang
  • Patent number: 9916986
    Abstract: Aspects of the disclosure include method of making semiconductor structures. Aspects include providing a semiconductor structure including a plurality of spacer, an organic planarization layer, and a SiARC layer. Aspects also include forming an inverted mask on the semiconductor structure, the inverted mask including an inverted mask opening above a portion of the plurality of spacers and a portion of the TiN layer. Aspects also include eroding the portion of the plurality of spacers below the inverted mask opening. Aspects also include depositing a fill material masking the portion of the plurality of spacers below the inverted mask opening and the portion of the TiN layer below the inverted mask opening to generate a masked TiN layer segment and an unmasked TiN layer segment and removing a portion of the unmasked TiN layer segment.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Yann A. Mignot
  • Publication number: 20180068994
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Application
    Filed: November 3, 2017
    Publication date: March 8, 2018
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 9911652
    Abstract: Mandrel lines non-mandrel lines, and spacers are located in a structure having several layers. A spacer in the set of spacers comprises a structure formed above the top mask layer. A first trench is etched at a first location on a mandrel line through the top mask layer and stopping at the middle mask layer. A second trench is etched at a second location on a non-mandrel line through the top mask layer and stopping at the middle mask layer. A spacer material is removed from a structure resulting from the etching the trenches. Vias are formed in the first and second trenches. An air-gap is formed at a location of the spacer. The first via structure and a first portion of the bottom mask layer under the first via structure are removed and filled with a conductive metal.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Carl J. Radens, John H. Zhang
  • Patent number: 9911651
    Abstract: A method of forming a skip-via, including, forming a first dielectric layer on a first metallization layer, forming a second metallization layer on the first dielectric layer and a second dielectric layer on the second metallization layer, removing a section of the second dielectric layer to form a via to the second metallization layer, removing a portion of the second metallization layer to form an aperture, and removing an additional portion of the second metallization layer to form an exclusion zone.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Huai Huang, Christopher J. Penny, Michael Rizzolo
  • Patent number: 9911647
    Abstract: A method for forming conductive lines on a wafer comprises forming a first hardmask, a planarizing layer, a second hardmask, a layer of sacrificial mandrel material on the second hardmask, and patterning a mask on the layer of sacrificial material. A first sacrificial mandrel and a second sacrificial mandrel and a gap are formed. A layer of spacer material is deposited in the gap. Portions of the first sacrificial mandrel and the second sacrificial mandrel are removed, and exposed portions of the second hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. The second hardmask, the spacers, and the planarizing layer are removed. Exposed portions of the insulator layer are removed to form a trench in the insulator layer, and the trench is filled with a conductive material.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Anuja E. DeSilva, Nelson M. Felix, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20180061705
    Abstract: A method of forming an interconnect that in one embodiment includes forming an opening in a dielectric layer, and treating a dielectric surface of the opening in the dielectric layer with a nitridation treatment to convert the dielectric surface to a nitrided surface. The method may further include depositing a tantalum containing layer on the nitrided surface. In some embodiments, the method further includes depositing a metal fill material on the tantalum containing layer. The interconnect formed may include a nitrided dielectric surface, a tantalum and nitrogen alloyed interface that is present on the nitrided dielectric surface, a tantalum layer on the tantalum and nitrogen alloy interface, and a copper fill.
    Type: Application
    Filed: October 13, 2017
    Publication date: March 1, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180061704
    Abstract: A method of forming an interconnect that in one embodiment includes forming an opening in a dielectric layer, and treating a dielectric surface of the opening in the dielectric layer with a nitridation treatment to convert the dielectric surface to a nitrided surface. The method may further include depositing a tantalum containing layer on the nitrided surface. In some embodiments, the method further includes depositing a metal fill material on the tantalum containing layer. The interconnect formed may include a nitrided dielectric surface, a tantalum and nitrogen alloyed interface that is present on the nitrided dielectric surface, a tantalum layer on the tantalum and nitrogen alloy interface, and a copper fill.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 1, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180061702
    Abstract: Semiconductor structures include a patterned interlayer dielectric overlaying a semiconductor substrate. The interlayer dielectric includes a first dielectric layer and at least one additional dielectric layer disposed on the first dielectric layer, wherein the patterned interlayer dielectric comprises at least one opening extending through the interlayer dielectric to the semiconductor substrate. Chemically enriched regions including ions of Si, P, B, N, O and combinations thereof are disposed in surfaces of the first dielectric layer and the at least one dielectric layer defined by the at least one opening. Also described are methods of for forming an interconnect structure in a semiconductor structure.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Publication number: 20180061817
    Abstract: Self-aligned three dimensional vertically stacked chip stacks and processes for forming the same generally include two or more vertically stacked chips supported by a scaffolding structure, the scaffolding structure defined by a first scaffolding trench and at least one additional scaffolding trench, the first scaffolding trench comprising a bottom surface having a width and a sidewall having a height extending from the bottom surface to define a lowermost trench in a scaffolding layer, the at least one additional scaffolding trench overlaying the first scaffolding trench having a sidewall having a height and a width, wherein the width of the at least one scaffolding trench is greater than the first scaffolding trench width to define a first stair between the first scaffolding trench and the at least one additional trench; a first chip secured to the first scaffolding trench having a height less than the first scaffolding trench sidewall height; and at least one additional chip secured to and supported by the
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Publication number: 20180061707
    Abstract: A semiconductor device and method of making the same, wherein in accordance with an embodiment of the present invention, the device includes a first conductive line including a first conductive material, and a second conductive line including a second conductive material. A via connects the first conductive line to the second conductive line, wherein the via includes conductive via material, wherein the via material top surface is coated with a liner material, wherein the via is a bottomless via.
    Type: Application
    Filed: November 1, 2017
    Publication date: March 1, 2018
    Inventors: Lawrence A. Clevenger, Baozhen Li, Kirk D. Peterson, Terry A. Spooner, Junli Wang
  • Publication number: 20180056862
    Abstract: Techniques are provided for alerting drivers of hazardous driving conditions using the sensing capabilities of wearable mobile technology. In one aspect, a method for alerting drivers of hazardous driving conditions includes the steps of: collecting real-time data from a driver of a vehicle, wherein the data is collected via a mobile device worn by the driver; determining whether the real-time data indicates that a hazardous driving condition exists; providing feedback to the driver if the real-time data indicates that a hazardous driving condition exists, and continuing to collect data from the driver in real-time if the real-time data indicates that a hazardous driving condition does not exist. The real-time data may also be collected and used to learn characteristics of the driver. These characteristics can be compared with the data being collected to help determine, in real-time, whether the driving behavior is normal and whether a hazardous driving condition exists.
    Type: Application
    Filed: August 21, 2017
    Publication date: March 1, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Jonathan H. Connell, II, Nalini K. Ratha, Michael Rizzolo
  • Patent number: 9905511
    Abstract: Nanoscale efuses, antifuses, and planar coil inductors are disclosed. A copper damascene process can be used to make all of these circuit elements. A low-temperature copper etch process can be used to make the efuses and efuse-like inductors. The circuit elements can be designed and constructed in a modular fashion by linking a matrix of metal columns in different configurations and sizes. The number of metal columns, or the size of a dielectric mesh included in the circuit element, determines its electrical characteristics. Alternatively, the efuses and inductors can be formed from interstitial metal that is either deposited into a matrix of dielectric columns, or left behind after etching columnar openings in a block of metal. Arrays of metal columns also serve a second function as features that can improve polish uniformity in place of conventional dummy structures. Use of such modular arrays provides flexibility to integrated circuit designers.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: February 27, 2018
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John H. Zhang, Yiheng Xu, Lawrence A. Clevenger, Carl Radens, Edem Wornyo
  • Patent number: 9905459
    Abstract: A method of forming an interconnect that in one embodiment includes forming an opening in a dielectric layer, and treating a dielectric surface of the opening in the dielectric layer with a nitridation treatment to convert the dielectric surface to a nitrided surface. The method may further include depositing a tantalum containing layer on the nitrided surface. In some embodiments, the method further includes depositing a metal fill material on the tantalum containing layer. The interconnect formed may include a nitrided dielectric surface, a tantalum and nitrogen alloyed interface that is present on the nitrided dielectric surface, a tantalum layer on the tantalum and nitrogen alloy interface, and a copper fill.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 9899317
    Abstract: A method for fabricating a semiconductor structure includes the following steps. A substrate including a dielectric material is formed. A surface of the substrate is molecularly modified to convert the surface of the substrate to a nitrogen-enriched surface. A metal layer is deposited on the molecularly modified surface of the substrate interacting with the molecularly modified surface to form a nitridized metal layer.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: February 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Hosadurga K. Shobha, Terry A. Spooner, Wei Wang, Chi-Chao Yang
  • Patent number: 9899256
    Abstract: A conductive line structure comprises a first conductive line arranged in a first dielectric layer, a second conductive line arranged in the first dielectric layer, a cap layer arranged on the first conductive line and the second conductive line, and an airgap arranged between the first conductive line and the second conductive line, the airgap defined by the first dielectric layer and the cap layer.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 20, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. Deprospo, Huai Huang, Christopher J. Penny, Michael Rizzolo
  • Patent number: 9899338
    Abstract: Methods for enhancing mechanical strength of back-end-of-line (BEOL) dielectrics to prevent crack propagation within interconnect stacks are provided. After forming interconnect structures in a dielectric material layer, a pore filling material is introduced into pores of a portion of the dielectric material layer that is located in a crack stop region present around a periphery of a chip region. By filling the pores of the portion of the dielectric material layer located in the crack stop region, the mechanical strength of the dielectric material layer is selectively enhanced in the crack stop region.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: February 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Huai Huang, Christopher J. Penny, Michael Rizzolo
  • Publication number: 20180046746
    Abstract: Embodiments include methods, design layout optimization systems, and computer program products for optimizing design layout of integrated circuits.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Inventors: Lawrence A. Clevenger, Jason D. Hibbeler, Dongbing Shao, Robert C. Wong
  • Publication number: 20180047676
    Abstract: Methods for enhancing mechanical strength of back-end-of-line (BEOL) dielectrics to prevent crack propagation within interconnect stacks are provided. After forming interconnect structures in a dielectric material layer, a pore filling material is introduced into pores of a portion of the dielectric material layer that is located in a crack stop region present around a periphery of a chip region. By filling the pores of the portion of the dielectric material layer located in the crack stop region, the mechanical strength of the dielectric material layer is selectively enhanced in the crack stop region.
    Type: Application
    Filed: August 23, 2017
    Publication date: February 15, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Bartlet H. DeProspo, Huai Huang, Christopher J. Penny, Michael Rizzolo
  • Patent number: 9882028
    Abstract: A method for forming fins of a semiconductor device comprises forming a first hardmask on a substrate, a sacrificial layer on the first hardmask, and a second hardmask on the sacrificial layer. Portions of the second hardmask and the sacrificial layer are removed to form a mandrel. Spacers are formed adjacent to the sacrificial mandrel. A second sacrificial layer is deposited and portions of the second sacrificial layer are removed to expose portions of the spacers and the first hardmask. A first doped region and a second doped region are formed by annealing. The second hardmask and the sacrificial spacer are removed. Undoped portions of the sacrificial mandrel and the second sacrificial layer are removed to further expose portions of the first hardmask. Exposed portions of the first hardmask are removed to expose portions of the semiconductor substrate, and exposed portions of the semiconductor substrate are removed to form fins.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Lawrence A. Clevenger, Balasubramanian S. Pranatharthiharan, John H. Zhang