Patents by Inventor Lawrence C. Gunn, III

Lawrence C. Gunn, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7046894
    Abstract: In a standard CMOS process, a layer of metallic salicide can be deposited on those selected portions of an integrated circuit, where it is desired to have metallic contacts for electronic components, such as transistors. The deposition of a salicide into optical devices such as the core of an optical waveguide or a light scatterer will damage the devices and prevent the passage of light through those sections of the devices. Prior to the deposition of the salicide, a salicide blocking layer is deposited on those parts of an integrated circuit, such as on an optical waveguide or a light scatterer, which are to be protected from damage by the deposition of salicide. The salicide blocking layer is used as one layer of the cladding of a silicon waveguide and a light scatterer.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 16, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier
  • Patent number: 7046896
    Abstract: Optoelectronic devices of the present invention include several embodiments of an electronically active optical waveguide made of a strip loaded waveguide with a lateral, self-aligned diode fabricated in a layer of silicon. A voltage applied across the diode changes the free carrier density in a portion of the active waveguide, which can change the refractive index in that portion of the waveguide. Changing the refractive index can cause a phase shift of an optical signal propagating down the waveguide and this effect can be used to control the optical signal. Changing the free carrier density can also change the amount of optical attenuation in a section of an active waveguide. Optoelectronic devices such as: modulators, attenuators, switches, beam diverters, tunable filters and other devices can be fabricated on a standard SOI substrate (silicon on insulator), which is typically used in the fabrication of CMOS integrated circuits.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: May 16, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Bing Li, Thierry J. Pinguet, David Press, Maxime Jean Rattier
  • Patent number: 7046895
    Abstract: Optoelectronic devices of the present invention include several embodiments of an electronically active optical waveguide made of a strip loaded waveguide with a lateral, self-aligned diode fabricated in a layer of silicon. A voltage applied across the diode changes the free carrier density in a portion of the active waveguide, which can change the refractive index in that portion of the waveguide. Changing the refractive index can cause a phase shift of an optical signal propagating down the waveguide and this effect can be used to control the optical signal. Changing the free carrier density can also change the amount of optical attenuation in a section of an active waveguide. Optoelectronic devices such as: modulators, attenuators, switches, beam diverters, tunable filters and other devices can be fabricated on a standard SOI substrate (silicon on insulator), which is typically used in the fabrication of CMOS integrated circuits.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: May 16, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Bing Li, Thierry J. Pinguet, David Press, Maxime Jean Rattier
  • Patent number: 7039258
    Abstract: High speed optical modulators can be made of k modulators connected in series disposed on one of a variety of semiconductor substrates. An electrical signal propagating in a microwave transmission line is tapped off of the transmission line at regular intervals and is amplified by k distributed amplifiers. Each of the outputs of the k distributed amplifiers is connected to a respective one of the k modulators. Distributed amplifier modulators can have much higher modulating speeds than a comparable lumped element modulator, due to the lower capacitance of each of the k modulators. Distributed amplifier modulators can have much higher modulating speeds than a comparable traveling wave modulator, due to the impedance matching provided by the distributed amplifiers.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: May 2, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Roger Koumans, Bing Li, Guo Liang Li, Thierry J. Pinguet
  • Patent number: 7027673
    Abstract: An apparatus and method for splitting a received optical signal into its orthogonal polarizations and sending the two polarizations on separate dual integrated waveguides to other systems on chip for further signal processing. The present invention provides an apparatus and method for facilitating the processing of optical signals in planar waveguides received from optical fibers.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: April 11, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier
  • Patent number: 7024066
    Abstract: This application describes, among others, wafer designs, testing systems and techniques for wafer-level optical and optoelectronic testing by coupling probe light to/from the top of the wafer. In the described exemplary implementations, wafers are designed with one or more optical alignment features or structures. The alignment structures are alongside the devices to be tested, but are easier to find or locate by optical means, than the devices to be tested. An optical diffraction grating structure such as a Littrow grating may be used as reflective alignment structures. (FIG. 6B and paragraph 56.) A Littrow grating as an alignment structure produces a retro-reflection. A Littrow grating is a one-port optical device, with input and output beams going along the same path. Various exemplary implementations are shown in FIGS. 3C, 5, 6A, 6B, 7A and 7B and described in paragraphs 18–21, 39–40 and 53–64.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: April 4, 2006
    Assignee: Luxtera, Inc.
    Inventors: Roman Malendevich, Myles Sussman, Lawrence C. Gunn, III
  • Patent number: 7010208
    Abstract: A standard CMOS process is used to fabricate optical and electronic devices at the same time on a monolithic integrated circuit. In the process, a layer of metallic salicide can be depsoited on those selected portions of an integrated circuit, where it is desired to have metallic contacts for electronic components, such as transistors. The deposition of a salicide into the core of an optical waveguide will damage the waveguide and prevent the passage of light through that section of the waveguide. Prior to the deposition of the salicide, a salicide blocking layer is deposited on those parts of an integrated circuit, such as on an optical waveguide, which are to be protected from damage by the deposition of salicide. The salicide blocking layer is used as one layer of the cladding of a silicon waveguide.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: March 7, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier, Giovanni Capellini
  • Patent number: 7006732
    Abstract: A polarization splitting grating coupler (PSGC) connects an optical signal from an optical element, such as a fiber, to an optoelectronic integrated circuit. The PSGC separates a received optical signal into two orthogonal polarizations and directs the two polarizations to separate waveguides on an integrated circuit. Each of the two separated polarizations can then be processed, as needed for a particular application, by the integrated circuit. A PSGC can also operate in the reverse direction, and couple two optical signals from an integrated circuit to two respective orthogonal polarizations of one optical output signal sent off chip to an optical fiber.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: February 28, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime J. Rattier, Jeremy Witzens
  • Patent number: 6999670
    Abstract: Optoelectronic devices of the present invention include several embodiments of an electronically active optical waveguide made of a strip loaded waveguide with a lateral, self-aligned diode fabricated in a layer of silicon. A voltage applied across the diode changes the free carrier density in a portion of the active waveguide, which can change the refractive index in that portion of the waveguide. Changing the refractive index can cause a phase shift of an optical signal propagating down the waveguide and this effect can be used to control the optical signal. Changing the free carrier density can also change the amount of optical attenuation in a section of an active waveguide. Optoelectronic devices such as: modulators, attenuators, switches, beam diverters, tunable filters and other devices can be fabricated on a standard SOI substrate (silicon on insulator), which is typically used in the fabrication of CMOS integrated circuits.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: February 14, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Bing Li, Thierry J. Pinguet, David L. R. Press, Maxime Jean Rattier
  • Patent number: 6993236
    Abstract: A standard CMOS process is used to fabricate optical, optoelectronic and electronic devices at the same time on a monolithic integrated circuit. FIG. 6 shows a polysilicon and silicon dioxide light scattering element formed on a silicon waveguide. The polysilicon light scatterer is formed on the core of the waveguide with a silicon dioxide layer between the polysilicon and the core. A standard CMOS process is used to form the waveguide and the light scattering element. FIG. 6A is a table summarizing the elements of the light scatterer and the waveguide of FIG. 6 and the CMOS transistors of FIGS. 1 and 2, which are formed from the same materials at the same time on the same substrate. Forming multiple light scatterers on the core of a waveguide can make a grating coupler.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: January 31, 2006
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier
  • Patent number: 6895148
    Abstract: The index of refraction of waveguide structures can be varied by altering carrier concentration. The waveguides preferably comprise semiconductors like silicon that are substantially optically transmissive at certain wavelengths. Variation of the carrier density in these semiconductors may be effectuated by inducing an electric field within the semiconductor for example by apply a voltage to electrodes associated with the semiconductor. Variable control of the index of refraction may be used to implement a variety of functionalites including, but not limited to, tunable waveguide gratings and resonant cavities, switchable couplers, modulators, and optical switches.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: May 17, 2005
    Assignee: California Institute of Technology
    Inventor: Lawrence C. Gunn, III
  • Patent number: 6887773
    Abstract: Methods for deposition of a Ge layer during a CMOS process on a monolithic device are disclosed. The insertion of the Ge layer enables the conversion of light to electrical signals easily. As a result of this method, standard metals can be attached directly to the Ge in completing an electrical circuit. Vias can also be used to connect to the Ge layer. In a first aspect of the invention, a method comprises the step of incorporating the deposition of Ge at multiple temperatures in a standard CMOS process. In a second aspect of the invention, a method comprises the step of incorporating the deposition of poly-Ge growth in a standard CMOS process.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: May 3, 2005
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Giovanni Capellini, Maxime Jean Rattier, Thierry J. Pinguet
  • Patent number: 5010139
    Abstract: An antistatic polymeric composition consisting of at least one antistatic additive of an ethylene oxide copolymer in the range of from about 3% to about 30% by weight and being a solid, nonionic material and having a dilution solution viscosity of greater than 0.25 g/ml and preferably having an average molecular weight greater than 20,000; and a polymeric material in the range from about 70% to about 97% by weight. The ethylene oxide copolymer comprises ethylene oxide in the range of from about 5% to about 95% by weight and at least 1 comonomer selected the group consisting of cyclic ethers, cyclic acetals, and cyclic esters, in the range of from about 95% to about 5% by weight. The polymeric material can be any thermoplastic, thermoplastic elastomer, or elastomer including ABS, ASA, polyamides, PBT, PET, PETG, PMMA, PUR, PVC, CPVC, PC, POM, POP, SMA, and SAN.
    Type: Grant
    Filed: June 14, 1989
    Date of Patent: April 23, 1991
    Assignee: The B. F. Goodrich Company
    Inventor: Simon H. P. Yu