Patents by Inventor Lee Organick

Lee Organick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10774379
    Abstract: This disclosure describes frameworks and techniques related to the random access of digital data encoded by polynucleotides. Digital data of a data file can be encoded as a series of nucleotides and one or more polynucleotide sequences can be generated that encode the digital data for the data file. The bits of the digital data can be segmented to produce multiple polynucleotide sequences that encode the bits of the digital data with each polynucleotide sequence encoding an individual segment of the digital data. The individual segments can be grouped together and associated with a group identifier. Each data file can be associated with a number of group identifiers and the number of segments in each group can be within a specified range. Primers corresponding to the group identifiers can be used to selectively access the polynucleotides that encode the digital data of a data file.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: September 15, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yuan-Jyue Chen, Karin Strauss, Luis H. Ceze, Lee Organick
  • Patent number: 10689684
    Abstract: This disclosure describes techniques to improve the sequencing of polynucleotides by decreasing the likelihood of errors occurring during a sequencing calibration process. In implementations, regions of polynucleotides that are used for the calibration process can be modified to reduce a number of polynucleotides that have a same nucleotide at one or more positions of the calibration regions. In some cases, the calibration regions can be modified by adding a sequence to the polynucleotides that replaces the original calibration regions. Also, the calibration regions can be modified by rearranging the nucleotides at the different positions of the calibration regions. Additionally, the calibration regions can be modified by adding sequences of varying length to the polynucleotides being sequenced to produce polynucleotides having varying length with different calibration regions.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: June 23, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yuan-Jyue Chen, Karin Strauss, Luis H. Ceze, Lee Organick, Randolph Lopez, Georg Seelig
  • Publication number: 20180265921
    Abstract: This disclosure describes frameworks and techniques related to the random access of digital data encoded by polynucleotides. Digital data of a data file can be encoded as a series of nucleotides and one or more polynucleotide sequences can be generated that encode the digital data for the data file. The bits of the digital data can be segmented to produce multiple polynucleotide sequences that encode the bits of the digital data with each polynucleotide sequence encoding an individual segment of the digital data. The individual segments can be grouped together and associated with a group identifier. Each data file can be associated with a number of group identifiers and the number of segments in each group can be within a specified range. Primers corresponding to the group identifiers can be used to selectively access the polynucleotides that encode the digital data of a data file.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventors: Yuan-Jyue Chen, Karin Strauss, Luis H. Ceze, Lee Organick
  • Publication number: 20180230509
    Abstract: This disclosure describes techniques to improve the sequencing of polynucleotides by decreasing the likelihood of errors occurring during a sequencing calibration process. In implementations, regions of polynucleotides that are used for the calibration process can be modified to reduce a number of polynucleotides that have a same nucleotide at one or more positions of the calibration regions. In some cases, the calibration regions can be modified by adding a sequence to the polynucleotides that replaces the original calibration regions. Also, the calibration regions can be modified by rearranging the nucleotides at the different positions of the calibration regions. Additionally, the calibration regions can be modified by adding sequences of varying length to the polynucleotides being sequenced to produce polynucleotides having varying length with different calibration regions.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Yuan-Jyue Chen, Karin Strauss, Luis H. Ceze, Lee Organick, Randolph Lopez, Georg Seelig