Patents by Inventor Leila Safavi-Tehrani

Leila Safavi-Tehrani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10804000
    Abstract: Methods and systems are provided for continuous-flow production of radioisotopes with high specific activity. Radioisotopes with high specific activity produced according to the methods described are also provided. The methods can include causing a liquid capture matrix to contact a target containing a target nuclide; irradiating the target with radiation, ionizing radiation, particles, or a combination thereof to produce the radionuclides that are ejected from the target and into the capture matrix; and causing the liquid capture matrix containing the radionuclides to flow from the target to recover the capture matrix containing the radionuclides with high specific activity. The methods are suitable for the production of a variety of radionuclides. For example, in some aspects the target nuclide is 237Np, and the radionuclide is 238Np that decays to produce 238Pu. In other aspects, the target nuclide is 98Mo, and the radionuclide is Mo that decays to produce 99mTc.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: October 13, 2020
    Assignee: The Regents of the University of California
    Inventors: Mikael Nilsson, Leila Safavi-Tehrani, George E. Miller
  • Publication number: 20170337998
    Abstract: Methods and systems are provided for continuous-flow production of radioisotopes with high specific activity. Radioisotopes with high specific activity produced according to the methods described are also provided. The methods can include causing a liquid capture matrix to contact a target containing a target nuclide; irradiating the target with radiation, ionizing radiation, particles, or a combination thereof to produce the radionuclides that are ejected from the target and into the capture matrix; and causing the liquid capture matrix containing the radionuclides to flow from the target to recover the capture matrix containing the radionuclides with high specific activity. The methods are suitable for the production of a variety of radionuclides. For example, in some aspects the target nuclide is 237Np, and the radionuclide is 238Np that decays to produce 238Pu. In other aspects, the target nuclide is 98Mo, and the radionuclide is 99Mo that decays to produce 99mTc.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 23, 2017
    Inventors: Mikael Nilsson, Leila Safavi-Tehrani, George E. Miller