Patents by Inventor Leon Shterengas

Leon Shterengas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9590140
    Abstract: An LED optimized for use in low-cost gas or other non-solid substance detection systems, emitting two wavelengths (“colors”) of electromagnetic radiation from the same aperture is disclosed. The LED device emits a light with a wavelength centered on an absorption line of the target detection non-solid substance, and also emits a reference line with a wavelength that is not absorbed by a target non-solid substance, while both wavelengths are transmitted through the atmosphere with low loss. Since the absorption and reference wavelengths are emitted from the same exact aperture, both wavelengths can share the same optical path, reducing the size and cost of the detector while also reducing potential sources of error due to optical path variation.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: March 7, 2017
    Inventors: Sergey Suchalkin, Gregory Belenky, Leon Shterengas, David Westerfeld
  • Publication number: 20160005921
    Abstract: An LED optimized for use in low-cost gas or other non-solid substance detection systems, emitting two wavelengths (“colors”) of electromagnetic radiation from the same aperture is disclosed. The LED device emits a light with a wavelength centered on an absorption line of the target detection non-solid substance, and also emits a reference line with a wavelength that is not absorbed by a target non-solid substance, while both wavelengths are transmitted through the atmosphere with low loss. Since the absorption and reference wavelengths are emitted from the same exact aperture, both wavelengths can share the same optical path, reducing the size and cost of the detector while also reducing potential sources of error due to optical path variation.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 7, 2016
    Applicant: POWER PHOTONICS CORPORATION
    Inventors: Sergey Suchalkin, Gregory Belenky, Leon Shterengas, David Westerfeld
  • Patent number: 9065000
    Abstract: A method of fabrication of barrier diode based infrared detectors, utilizing the growth of unstrained, not relaxed III-V compound semiconductor material layers having a lattice constant over 6 Angstrom, is provided. The growth is performed by the means of Molecular Beam Epitaxy (MBE) or Metal-Organic Vapor Phase Epitaxy (MOVPE). The method comprises the use of bulk crystalline substrates and the growth of a transitional layer of GaInAsSb with graded composition, followed by an optional thick layer of GaInAsSb of constant composition, lattice matched to the said III-V compound semiconductor material layers, the said optional layer of GaInAsSb of constant composition serving as a virtual substrate. The method provides high crystalline quality layers suitable for semiconductor device fabrication that can effectively interact with electromagnetic radiation of the mid-infrared spectral range with a wavelength between about 2 micrometers to about 16 micrometers.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: June 23, 2015
    Inventors: Gregory Belenky, Leon Shterengas, Arthur David Westerfeld
  • Patent number: 8571082
    Abstract: The present invention provides a QCL device with an electrically controlled refractive index through the Stark effect. By changing the electric field in the active area, the energy spacing between the lasing energy levels may be changed and, hence, the effective refractive index in the spectral region near the laser wavelength may be controlled.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 29, 2013
    Assignees: Maxion Technologies, Inc., The Research Foundation of State University of New York, Board of Regents, The University of Texas System
    Inventors: Gregory Belenky, John D. Bruno, Mikhail V. Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard L. Tober, Mikhail Belkin
  • Publication number: 20120223362
    Abstract: A method of fabrication of barrier diode based infrared detectors, utilizing the growth of unstrained, not relaxed III-V compound semiconductor material layers having a lattice constant over 6 Angstrom, is provided. The growth is performed by the means of Molecular Beam Epitaxy (MBE) or Metal-Organic Vapor Phase Epitaxy (MOVPE). The method comprises the use of bulk crystalline substrates and the growth of a transitional layer of GaInAsSb with graded composition, followed by an optional thick layer of GaInAsSb of constant composition, lattice matched to the said III-V compound semiconductor material layers, the said optional layer of GaInAsSb of constant composition serving as a virtual substrate. The method provides high crystalline quality layers suitable for semiconductor device fabrication that can effectively interact with electromagnetic radiation of the mid-infrared spectral range with a wavelength between about 2 micrometers to about 16 micrometers.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Applicants: POWER PHOTONIC, RESEARCH FOUNDATION OF SUNY
    Inventors: Gregory Belenky, Leon Shterengas, Arthur David Westerfeld
  • Publication number: 20120120972
    Abstract: The present invention provides a QCL device with an electrically controlled refractive index through the Stark effect. By changing the electric field in the active area, the energy spacing between the lasing energy levels may be changed and, hence, the effective refractive index in the spectral region near the laser wavelength may be controlled.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 17, 2012
    Inventors: Gregory Belenky, John D. Bruno, Mikhail V. Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard L. Tober, Mikhail Belkin
  • Patent number: 7876795
    Abstract: A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: January 25, 2011
    Assignees: Maxion Technologies, Inc., The Research Foundation of State University of New York
    Inventors: Gregory Belenky, John D. Bruno, Mikhail V. Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard L. Tober
  • Publication number: 20060056466
    Abstract: A semiconductor light source is disclosed comprising a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. Radiative recombination occurs between the electrons and holes, accumulated in the ground states of the triangular potential wells formed in the high- and low-affinity layers of each active region periods.
    Type: Application
    Filed: August 18, 2005
    Publication date: March 16, 2006
    Inventors: Gregory Belenky, John Bruno, Mikhail Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard Tober