Patents by Inventor Leonid Beresnev

Leonid Beresnev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314714
    Abstract: A method and apparatus for controlling propagation of a light beam using a beveled endcap of an optical fiber, where the endcap has a first end coupled to the optical fiber and a second end having a bevel that circumscribes a facet. The bevel has an angle relative to the plane of the facet that directs a peripheral portion of the light beam towards a lens and the facet directs a central portion of the light beam towards the lens. As such, the light beam is collimated with substantially all of the power of the light beam propagating through the lens and all the power delivered with fiber core to the output endcap is propagating through the lens despite the divergence of the delivered beam and a restricted aperture of the lens.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 5, 2023
    Inventors: Leonid A. Beresnev, David A. Ligon, Angel S. Flores, Mark Dubinskiy, Kristan P. Gurton, Chatt C. Williamson
  • Patent number: 11762149
    Abstract: A method and apparatus for controlling propagation of a light beam using a beveled endcap of an optical fiber, where the endcap has a first end coupled to the optical fiber and a second end having a bevel that circumscribes a facet. The bevel has an angle relative to the plane of the facet that directs a peripheral portion of the light beam towards a lens and the facet directs a central portion of the light beam towards the lens. As such, the light beam is collimated with substantially all of the power of the light beam propagating through the lens and all the power delivered with fiber core to the output endcap is propagating through the lens despite the divergence of the delivered beam and a restricted aperture of the lens.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: September 19, 2023
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leonid A. Beresnev, David A. Ligon, Angel S. Flores, Mark Dubinskiy, Kristan P. Gurton, Chatt C. Williamson
  • Patent number: 11296477
    Abstract: A method, apparatus and system for coherent beam combining (CBC) in high energy fiber laser (HEL) systems include generating a reference interference pattern of a signal source including at least two single-mode optical signals, capturing and evaluating the reference interference pattern, maximizing an intensity of the selected area of the captured, reference interference pattern, increasing a linewidth of the optical signals generating the reference interference pattern until the reference interference pattern is degraded, and adjusting a delay time of one of the at least two single-mode optical signals until the reference interference pattern is recovered, by adjusting a value of a delay of a delayed RF signal with a broaden linewidth to a respective EO linewidth broadening modulator in at least one channel of the at least two single-mode optical signals while evaluating the interference pattern on a display device.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: April 5, 2022
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leonid A. Beresnev, Kristan P. Gurton, David A. Ligon, Anthony R. Valenzuela, Chatt C. Williamson
  • Publication number: 20200350737
    Abstract: A method, apparatus and system for coherent beam combining (CBC) in high energy fiber laser (HEL) systems include generating a reference interference pattern of a signal source including at least two single-mode optical signals, capturing and evaluating the reference interference pattern, maximizing an intensity of the selected area of the captured, reference interference pattern, increasing a linewidth of the optical signals generating the reference interference pattern until the reference interference pattern is degraded, and adjusting a delay time of one of the at least two single-mode optical signals until the reference interference pattern is recovered, by adjusting a value of a delay of a delayed RF signal with a broaden linewidth to a respective EO linewidth broadening modulator in at least one channel of the at least two single-mode optical signals while evaluating the interference pattern on a display device.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Leonid A. Beresnev, Kristan P. Gurton, David A. Ligon, Anthony R. Valenzuela, Chatt C. Williamson
  • Patent number: 10371906
    Abstract: A technique for delivery of a divergent laser beam emitted with a free-space laser fiber facet, the beam having an optical power, into an optical waveguide. An optical axis of the laser beam is aligned approximately along a propagation Z direction into the optical waveguide. The fiber facet is located in a first plane perpendicular to the Z direction. The waveguide includes an input, direction, and X-Y position of the input in a second plane. The waveguide includes fluctuations in a X-Y-Z position of the input and fluctuations in direction. The laser beam is transformed into a collimated beam by re-directing a propagation of the laser beam, shifting the laser beam parallel to the Z direction, and focusing the laser beam into the input. The speed of transformation of the laser beam is greater than an instant speed of the fluctuations. A maximum optical power is delivered into the waveguide.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: August 6, 2019
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leonid A. Beresnev, Anthony R. Valenzuela, Chatt C. Williamson
  • Publication number: 20190219779
    Abstract: A technique for delivery of a divergent laser beam emitted with a free-space laser fiber facet, the beam having an optical power, into an optical waveguide. An optical axis of the laser beam is aligned approximately along a propagation Z direction into the optical waveguide. The fiber facet is located in a first plane perpendicular to the Z direction. The waveguide includes an input, direction, and X-Y position of the input in a second plane. The waveguide includes fluctuations in a X-Y-Z position of the input and fluctuations in direction. The laser beam is transformed into a collimated beam by re-directing a propagation of the laser beam, shifting the laser beam parallel to the Z direction, and focusing the laser beam into the input. The speed of transformation of the laser beam is greater than an instant speed of the fluctuations. A maximum optical power is delivered into the waveguide.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 18, 2019
    Inventors: Leonid A. Beresnev, Anthony R. Valenzuela, Chatt C. Williamson
  • Patent number: 10222627
    Abstract: An optics system includes at least one emitting fiber tip that transmits a divergent beam. The divergent beam includes a global maximum intensify of radiation centered with an output optical axis. The divergent beam includes central beams for collimating and periphery beams for disposing. The periphery beams include parasitic radiation of the divergent beam. The optics system includes at least one collimating lens having an output size, output shape, and output optical axis centered thereto and configured to redirect the central beams to a target and redirect the periphery beams into free-space; and at least one redirecting element positioned in between the at least one emitting fiber tip and the at least one collimating lens. The redirecting element includes a first area having an interior size and interior shape to transmit the central beams, and at least one second area outside of the first area to transmit the periphery beams.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: March 5, 2019
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leonid A. Beresnev, Anthony R. Valenzuela, Chatt C. Williamson
  • Publication number: 20180275418
    Abstract: An optics system includes at least one emitting fiber tip that transmits a divergent beam. The divergent beam includes a global maximum intensify of radiation centered with an output optical axis. The divergent beam includes central beams for collimating and periphery beams for disposing. The periphery beams include parasitic radiation of the divergent beam. The optics system includes at least one collimating lens having an output size, output shape, and output optical axis centered thereto and configured to redirect the central beams to a target and redirect the periphery beams into free-space; and at least one redirecting element positioned in between the at least one emitting fiber tip and the at least one collimating lens. The redirecting element includes a first area having an interior size and interior shape to transmit the central beams, and at least one second area outside of the first area to transmit the periphery beams.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 27, 2018
    Inventors: Leonid A. Beresnev, Anthony R. Valenzuela, Chatt C. Williamson
  • Patent number: 9632254
    Abstract: An optical fiber positioner having an elongated base with sidewalls and a longitudinally extending throughbore. A flexible optical fiber extends through the throughbore and has one end protruding outwardly from an end surface of the base. A plurality of actuators are secured to the sidewalls of the base so that an end of each actuator is positioned adjacent the end of the base. A crossbeam is then connected to the ends of each actuator so that the crossbeam moves laterally relative to the base in unison with the deflection of the actuators. The crossbeam has an opening through which the optical fiber extends so that the optical fiber deflects in unison with the lateral movement of the crossbeam. Various fixtures for assembly of the optical fiber positioner are also shown.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 25, 2017
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Leonid A. Beresnev
  • Publication number: 20170075068
    Abstract: A method and apparatus for controlled displacement, rotation and deformation of parts of a fiber optic collimator so as to provide multiple degrees of adjustment freedom that are decoupled one from another, for adjusting the path of a light beam, comprising: an output elongate hollow node for passing a light beam therethrough and towards a lens, and an elongate hollow base node having separate top and bottom parts connected to each other by opposed ends of a plurality of flexible rods that restrict the relative movement between the top and bottom parts of the base node to substantially only translational parallel movement. Opposed portions of the top and bottom parts of the base node each include a respective screw and an opposed slanted surface, which upon interaction, develop a shearing force which is applied to the top and bottom parts of the base node and cause a translational parallel relative movement therebetween.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventor: Leonid A. Beresnev
  • Publication number: 20170038536
    Abstract: An optical fiber positioner having an elongated base with sidewalls and a longitudinally extending throughbore. A flexible optical fiber extends through the throughbore and has one end protruding outwardly from an end surface of the base. A plurality of actuators are secured to the sidewalls of the base so that an end of each actuator is positioned adjacent the end of the base. A crossbeam is then connected to the ends of each actuator so that the crossbeam moves laterally relative to the base in unison with the deflection of the actuators. The crossbeam has an opening through which the optical fiber extends so that the optical fiber deflects in unison with the lateral movement of the crossbeam. Various fixtures for assembly of the optical fiber positioner are also shown.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 9, 2017
    Inventor: Leonid A. Beresnev
  • Patent number: 9454004
    Abstract: A method and apparatus for coherent beam combining in an array of laser beam collimators. The array of laser beam collimators includes an array of a plurality collimating lenses, each lens intercepting a respective one of a plurality of divergent laser beams. Each collimating lens is joined with adjacent collimating lenses such that an output aperture is formed with a common vertex of the adjacently joined collimating lenses. A concave mirror is positioned a distance from the common vertex for receiving a fraction of each of the collimated laser beams that passed through a portion of each of the collimating lenses that are adjacent to the common vertex, and then providing reflected fractional collimated laser beams. A sensor intercepts the reflected fractional collimated laser beams so as to provide a signal that is applied to synchronize the phase of each of the collimated laser beams.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: September 27, 2016
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leonid A. Beresnev, Jony J. Liu, Gary W. Carhart
  • Publication number: 20160231509
    Abstract: A method for mounting an optical fiber within a tube in which the optical fiber is positioned through the tube so that a portion of the fiber protrudes outwardly from the distal end of the tube. A curable material, such as an adhesive, is then applied to the optical fiber portion which, upon curing, forms a flexible solid material having the refractive index less than refractive index of cladding material of said fiber optic. The outwardly protruding portion of the fiber is then retracted back into the tube so that the flexible solid material isolates the fiber portion from the tube. In addition, different clamping assemblies are provided for attaching protective sheathing for the optic fiber to a mount for the optic fiber which permit easy disassembly and removal.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 11, 2016
    Inventor: Leonid A. Beresnev
  • Patent number: 9223091
    Abstract: A method and apparatus for controlled displacement, rotation and deformation of parts of a fiber optic collimator so as to provide multiple degrees of adjustment freedom that are decoupled one from another, for adjusting the path of a light beam, comprising: an output elongate hollow node for passing a light beam therethrough and towards a lens, and an elongate hollow base node having separate top and bottom parts connected to each other by opposed ends of a plurality of flexible rods that restrict the relative movement between the top and bottom parts of the base node to substantially only translational parallel movement. Opposed portions of the top and bottom parts of the base node each include a respective screw and an opposed slanted surface, which upon interaction, develop a shearing force which is applied to the top and bottom parts of the base node and cause a translational parallel relative movement therebetween.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 29, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Leonid A. Beresnev
  • Publication number: 20140231618
    Abstract: A method and apparatus for coherent beam combining in an array of laser beam collimators. The array of laser beam collimators includes an array of a plurality collimating lenses, each lens intercepting a respective one of a plurality of divergent laser beams. Each collimating lens is joined with adjacent collimating lenses such that an output aperture is formed with a common vertex of the adjacently joined collimating lenses. A concave mirror is positioned a distance from the common vertex for receiving a fraction of each of the collimated laser beams that passed through a portion of each of the collimating lenses that are adjacent to the common vertex, and then providing reflected fractional collimated laser beams. A sensor intercepts the reflected fractional collimated laser beams so as to provide a signal that is applied to synchronize the phase of each of the collimated laser beams.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 21, 2014
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventors: Leonid A. Beresnev, Jony J. Liu, Gary W. Carhart
  • Publication number: 20130342078
    Abstract: A method and apparatus for a layered piezoelectric actuator comprising: a first conductive layer and second conductive layer disposed on a first piezoelectric layer. The apparatus further comprising a third conductive layer and fourth conductive layer disposed on a second piezoelectric layer. Further, adhesive is disposed between the second conductive layer and third conductive layer, wherein the conductive layers further comprise a bending area and non-bending area. The non-bending area comprises the mounting area and connection area The connection area further comprises the connection points, opening to access the connection point of adjacent layer and overlap area, providing the stability/robustness of stack during the fabrication, adhering and exploitation of the bending actuator.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventor: Leonid A. Beresnev
  • Publication number: 20130215527
    Abstract: Apparatus for correcting a distorted incident wavefront are disclosed herein. In some embodiments, an apparatus may include a deformable mirror haying a first surface; a plurality of bimorph actuators coupled to an opposing second surface of the deformable mirror to tilt the deformable mirror with respect to a first plane; at least one mount to convert first motions of the plurality of bimorph actuators to tilt the deformable mirror with respect to the first plane; and an assembly disposed between the at least one mount and the second surface of the deformable mirror to decouple the first motions of the plurality of bimorph actuators from second motions in the deformable mirror that deform the first surface, wherein the plurality of bimorph actuators, the at least one mount, and the assembly have a combined footprint that is smaller than a surface area of the first surface of the deformable mirror.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Inventors: Leonid A. Beresnev, Mikhail A. Vorontsov
  • Patent number: 8503837
    Abstract: A device for the positioning of fiber optic output including a base having a hole disposed at a midpoint thereof, a collar having an opening at a midpoint, a plurality of bimorph actuators, each actuator connected to an outer side surface of the base and located at opposite ends, a plurality of flexible beams, each having a first end connected to the collar and a second end connected to a bimorph actuator, a flexible tube inserted in the hole, where a bottom end of the tube is cantilevered at a bottom of the base and a top end of the tube is inserted in the opening of the collar, and a fiber optic embedded in the flexible tube.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Leonid A. Beresnev, Mikhail A. Vorontsov
  • Publication number: 20120224824
    Abstract: A device for the positioning of fiber optic output including a base having a hole disposed at a midpoint thereof, a collar having an opening at a midpoint, a plurality of bimorph actuators, each actuator connected to an outer side surface of the base and located at opposite ends, a plurality of flexible beams, each having a first end connected to the collar and a second end connected to a bimorph actuator, a flexible tube inserted in the hole, where a bottom end of the tube is cantilevered at a bottom of the base and a top end of the tube is inserted in the opening of the collar, and a fiber optic embedded in the flexible tube.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 6, 2012
    Inventors: Leonid A. Beresnev, Mikhail A. Vorontsov
  • Patent number: 7769300
    Abstract: A method and device for reducing the distortion of optical pulses caused by the polarization mode dispersion in optical communication systems is provided. When an optical pulse having any polarization is transmitted through an optical communication system, which is optically anisotropic, at least in sections, the optical pulse may become distorted due to the different velocities of the various polarization components. This distortion of the optical pulses may reduces the maximum transmission rate of the system. A method is provided for functioning in response to the detected transmission quality of the communication system where a polarization-controlling device for setting the polarization of the optical pulse is driven in such a way that the transmission quality is maximized. An optical communication system, including an optical transmission medium, involves a device for determining the transmission quality of the communication system, a regulating device, and a polarization-controlling device.
    Type: Grant
    Filed: January 17, 2000
    Date of Patent: August 3, 2010
    Assignee: Deutsche Telekom AG
    Inventors: Wolfgang Dultz, Leonid Beresnev, Erna Frins, Franko Kueppers, Heidrun Schmitzer, Joachim Vobian, Werner Weiershausen