Patents by Inventor Leonid Poslavsky

Leonid Poslavsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175589
    Abstract: Automatic wavelength or angle pruning for optical metrology is described. An embodiment of a method for automatic wavelength or angle pruning for optical metrology includes determining a model of a structure including a plurality of parameters; designing and computing a dataset of wavelength-dependent or angle-dependent data for the model; storing the dataset in a computer memory; performing with a processor an analysis of the dataset for the model including applying an outlier detection technology on the dataset, and identifying any data outliers, each data outlier being a wavelength or angle; and, if any data outliers are identified in the analysis of the dataset of the model, removing the wavelengths or angles corresponding to the data outliers from the dataset to generate a modified dataset, and storing the modified dataset in the computer memory.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: November 16, 2021
    Assignee: KLA Corporation
    Inventors: Lie-Quan Lee, Leonid Poslavsky
  • Patent number: 10895810
    Abstract: Embodiments include automatic selection of sample values for optical metrology. An embodiment of a method includes providing a library parameter space for modeling of a diffracting structure using an optical metrology system; automatically determining by a processing unit a reduced sampling set from the library parameter space, wherein the reduced space is based on one or both of the following recommending a sampling shape based on an expected sample space usage, or recommending a sampling filter based on correlation between two or more parameters of the library parameter space; and generating a library for the optical metrology system using the reduced sampling set.
    Type: Grant
    Filed: November 15, 2014
    Date of Patent: January 19, 2021
    Assignee: KLA Corporation
    Inventors: Meng Cao, Leonid Poslavsky, Inkyo Kim, Lie-Quan Lee
  • Patent number: 10770362
    Abstract: Methods and systems for determining band structure characteristics of high-k dielectric films deposited over a substrate based on spectral response data are presented. High throughput spectrometers are utilized to quickly measure semiconductor wafers early in the manufacturing process. Optical models of semiconductor structures capable of accurate characterization of defects in high-K dielectric layers and embedded nanostructures are presented. In one example, the optical dispersion model includes a continuous Cody-Lorentz model having continuous first derivatives that is sensitive to a band gap of a layer of the unfinished, multi-layer semiconductor wafer. These models quickly and accurately represent experimental results in a physically meaningful manner. The model parameter values can be subsequently used to gain insight and control over a manufacturing process.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: September 8, 2020
    Assignee: KLA Corporation
    Inventors: Natalia Malkova, Leonid Poslavsky, Ming Di, Qiang Zhao, Dawei Hu
  • Patent number: 10648793
    Abstract: A library expansion system, method, and computer program product for metrology are provided. In use, processing within a first multi-dimensional library is performed by a metrology system. During the processing within the first multi-dimensional library, a second multi-dimensional library is identified. The processing is then transitioned to the second multi-dimensional library. Further, processing within the second multi-dimensional library is performed by the metrology system.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: May 12, 2020
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Leonid Poslavsky, Liequan Lee
  • Patent number: 10605722
    Abstract: Methods and systems for matching measurement spectra across one or more optical metrology systems are presented. The values of one or more system parameters used to determine the spectral response of a specimen to a measurement performed by a target metrology system are optimized. The system parameter values are optimized such that differences between measurement spectra generated by a reference system and the target system are minimized for measurements of the same metrology targets. Methods and systems for matching spectral errors across one or more optical metrology systems are also presented. A trusted metrology system measures the value of at least one specimen parameter to minimize model errors introduced by differing measurement conditions present at the time of measurement by the reference and target metrology systems. Methods and systems for parameter optimization based on low-order response surfaces are presented to reduce the compute time required to refine system calibration parameters.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 31, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Hidong Kwak, John Lesoine, Malik Sadiq, Lanhua Wei, Shankar Krishnan, Leonid Poslavsky, Mikhail M. Sushchik
  • Patent number: 10481088
    Abstract: Automatic determination of Fourier harmonic order for computation of spectral information for diffraction structures described. An embodiment of a method includes automatically determining a Fourier harmonic order for computation of spectral information for periodic structures, wherein the determination of the Fourier harmonic order is based at least in part on the pitches in each of multiple directions of the periodic structures, material properties of the periodic structures, and characteristics of the periodic structures in which the materials are contained; and computing the spectral information for the periodic structures based at least in part on the determined Fourier harmonic order.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: November 19, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Mark Backues, Paul Aoyagi, Leonid Poslavsky
  • Patent number: 10410935
    Abstract: Methods and systems for determining band structure characteristics of high-k dielectric films deposited over a substrate based on spectral response data are presented. High throughput spectrometers are utilized to quickly measure semiconductor wafers early in the manufacturing process. Optical models of semiconductor structures capable of accurate characterization of defects in high-K dielectric layers and embedded nanostructures are presented. In one example, the optical dispersion model includes a continuous Cody-Lorentz model having continuous first derivatives that is sensitive to a band gap of a layer of the unfinished, multi-layer semiconductor wafer. These models quickly and accurately represent experimental results in a physically meaningful manner. The model parameter values can be subsequently used to gain insight and control over a manufacturing process.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: September 10, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Natalia Malkova, Leonid Poslavsky, Ming Di, Qiang Zhao, Dawei Hu
  • Patent number: 10393647
    Abstract: A system, method, and computer program product are provided for automatically determining a parameter causing an abnormal semiconductor metrology measurement. In use, an abnormal semiconductor metrology measurement measured from a fabricated semiconductor component is received. At least one parameter of the fabricated semiconductor component causing the abnormal semiconductor metrology measurement is then automatically determined by one or more hardware processors.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: August 27, 2019
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Qiang Jimmy Zhao, Liequan Lee, Jonathan Ian Iloreta, Hong Qiu, Leonid Poslavsky
  • Patent number: 10386729
    Abstract: Dynamic removal of correlation of highly-correlated parameters for optical metrology is described. An embodiment of a method includes determining a model of a structure, the model including a set of parameters; performing optical metrology measurement of the structure, including collecting spectra data on a hardware element; during the measurement of the structure, dynamically removing correlation of two or more parameters of the set of parameters, an iteration of the dynamic removal of correlation including: generating a Jacobian matrix of the set of parameters, applying a singular value decomposition of the Jacobian matrix, selecting a subset of the set of parameters, and computing a direction of the parameter search based on the subset of parameters. If the model does not converge, performing one or more additional iterations of the dynamic removal of correlation until the model converges; and if the model does converge, reporting the results of the measurement.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: August 20, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Lie-Quan Lee, Leonid Poslavsky, Stilian Ivanov Pandev
  • Patent number: 10345095
    Abstract: Methods and systems for solving measurement models of complex device structures with reduced computational effort are presented. In some embodiments, a measurement signal transformation model is employed to compute transformed measurement signals from coarse measurement signals. The transformed measurement signals more closely approximate a set of measured signals than the coarse measurement signals. However, the coarse set of measured signals are computed with less computational effort than would be required to directly compute measurement signals that closely approximate the set of measured signals. In other embodiments, a measurement signal transformation model is employed to compute transformed measurement signals from actual measured signals. The transformed measurement signals more closely approximate the coarse measurement signals than the actual measured signals.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 9, 2019
    Assignee: KLA- Tencor Corporation
    Inventors: Stilian Ivanov Pandev, Leonid Poslavsky, Dzmitry Sanko, Andrei V. Shchegrov
  • Patent number: 10190868
    Abstract: A metrology system, method, and computer program product that employ automatic transitioning between utilizing a library and utilizing regression for measurement processing are provided. In use, it is determined, by the metrology system, that a predetermined condition has been met. In response to determining that the predetermined condition has been met, the metrology system automatically transitions between utilizing a library and utilizing regression for measurement processing.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: January 29, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Liequan Lee, Raphael Jean Michel Marie Getin, Meng Cao, Leonid Poslavsky, Torsten Rudolf Kaack, Hong Qiu
  • Patent number: 10151986
    Abstract: Methods and systems for estimating values of parameters of interest of actual device structures based on optical measurements of nearby metrology targets are presented herein. High throughput, inline metrology techniques are employed to measure metrology targets located near actual device structures. Measurement data collected from the metrology targets is provided to a trained signal response metrology (SRM) model. The trained SRM model estimates the value of one or more parameters of interest of the actual device structure based on the measurements of the metrology target. The SRM model is trained to establish a functional relationship between actual device parameters measured by a reference metrology system and corresponding optical measurements of at least one nearby metrology target. In a further aspect, the trained SRM is employed to determine corrections of process parameters to bring measured device parameter values within specification.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: December 11, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Thaddeus Gerard Dziura, Stilian Ivanov Pandev, Leonid Poslavsky
  • Patent number: 10088413
    Abstract: Methods and systems for calibrating system parameter values of a target inspection system are presented. Spectral Error Based Calibration (SEBC) increases consistency among inspection systems by minimizing differences in the spectral error among different inspection systems for a given specimen or set of specimens. The system parameter values are determined such that differences between a spectral error associated with a measurement of a specimen by the target inspection system and a spectral error associated with a measurement of the same specimen by a reference inspection system are minimized. In some examples, system parameter values are calibrated without modifying specimen parameters. Small inaccuracies in specimen parameter values have little effect on the calibration because the target system and the reference system both measure the same specimen or set of specimens. By performing SEBC over a set of specimens, the resulting calibration is robust to a wide range of specimens under test.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: October 2, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Hidong Kwak, Zhiming Jiang, Ward RDell Dixon, Kenneth Edward James, Jr., Leonid Poslavsky, Torsten Kaack
  • Patent number: 10079183
    Abstract: Methods and systems of process control and yield management for semiconductor device manufacturing based on predictions of final device performance are presented herein. Estimated device performance metric values are calculated based on one or more device performance models that link parameter values capable of measurement during process to final device performance metrics. In some examples, an estimated value of a device performance metric is based on at least one structural characteristic and at least one band structure characteristic of an unfinished, multi-layer wafer. In some examples, a prediction of whether a device under process will fail a final device performance test is based on the difference between an estimated value of a final device performance metric and a specified value. In some examples, an adjustment in one or more subsequent process steps is determined based at least in part on the difference.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: September 18, 2018
    Assignee: KLA-Tenor Corporation
    Inventors: Xiang Gao, Philip D. Flanner, III, Leonid Poslavsky, Ming Di, Qiang Zhao, Scott Penner
  • Patent number: 10006865
    Abstract: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: June 26, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Derrick Shaughnessy, Michael S. Bakeman, Guorong V. Zhuang, Andrei V. Shchegrov, Leonid Poslavsky
  • Publication number: 20180100796
    Abstract: Methods and systems for matching measurement spectra across one or more optical metrology systems are presented. The values of one or more system parameters used to determine the spectral response of a specimen to a measurement performed by a target metrology system are optimized. The system parameter values are optimized such that differences between measurement spectra generated by a reference system and the target system are minimized for measurements of the same metrology targets. Methods and systems for matching spectral errors across one or more optical metrology systems are also presented. A trusted metrology system measures the value of at least one specimen parameter to minimize model errors introduced by differing measurement conditions present at the time of measurement by the reference and target metrology systems. Methods and systems for parameter optimization based on low-order response surfaces are presented to reduce the compute time required to refine system calibration parameters.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Inventors: Hidong Kwak, John Lesoine, Malik Sadiq, Lanhua Wei, Shankar Krishnan, Leonid Poslavsky, Mikhail M. Sushchik
  • Patent number: 9915522
    Abstract: Provided are scatterometry techniques for evaluating a 3D diffracting structure. In one embodiment, a method involves providing a 3D spatial model of the diffracting structure and discretizing the model into a 3D spatial mesh. The method includes approximating 3D fields for each element of the 3D mesh using 3D spatial basis functions and generating a matrix including coefficients of the 3D spatial basis functions approximating the fields. The coefficients of the 3D spatial basis functions are computed and used in computing spectral information for the model. The computed spectral information for the model is compared with measured spectral information for the diffracting structure. If the model is a good model fit, the method involves determining a physical characteristic of the diffracting structure based on the model of the diffracting structure.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 13, 2018
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Peilin Jiang, Leonid Poslavsky
  • Patent number: 9903711
    Abstract: A metrology performance analysis system includes a metrology tool including one or more detectors and a controller communicatively coupled to the one or more detectors. The controller is configured to receive one or more metrology data sets associated with a metrology target from the metrology tool in which the one or more metrology data sets include one or more measured metrology metrics and the one or more measured metrology metrics indicate deviations from nominal values. The controller is further configured to determine relationships between the deviations from the nominal values and one or more selected semiconductor process variations, and determine one or more root causes of the deviations from the nominal values based on the relationships between values of the one or more metrology metrics and the one or more selected semiconductor process variations.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: February 27, 2018
    Assignee: KLA—Tencor Corporation
    Inventors: Ady Levy, Daniel Kandel, Michael E. Adel, Leonid Poslavsky, John Robinson, Tal Marciano, Barak Bringoltz, Tzahi Grunzweig, Dana Klein, Tal Itzkovich, Nadav Carmel, Nuriel Amir, Vidya Ramanathan, Janay Camp, Mark Wagner
  • Patent number: 9857291
    Abstract: Methods and systems for matching measurement spectra across one or more optical metrology systems are presented. The values of one or more system parameters used to determine the spectral response of a specimen to a measurement performed by a target metrology system are optimized. The system parameter values are optimized such that differences between measurement spectra generated by a reference system and the target system are minimized for measurements of the same metrology targets. Methods and systems for matching spectral errors across one or more optical metrology systems are also presented. A trusted metrology system measures the value of at least one specimen parameter to minimize model errors introduced by differing measurement conditions present at the time of measurement by the reference and target metrology systems. Methods and systems for parameter optimization based on low-order response surfaces are presented to reduce the compute time required to refine system calibration parameters.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 2, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Hidong Kwak, John Lesoine, Malik Sadiq, Lanhua Wei, Shankar Krishnan, Leonid Poslavsky, Mikhail M. Sushchik
  • Patent number: 9719932
    Abstract: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 1, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Derrick Shaughnessy, Michael S. Bakeman, Guorong V. Zhuang, Andrei V. Shchegrov, Leonid Poslavsky