Patents by Inventor Lewis J. Kraft

Lewis J. Kraft has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123448
    Abstract: An example of a flow cell includes a substrate and a reaction area defined in or over the substrate. The reaction area includes two angularly offset and non-perpendicular surfaces relative to a planar surface of the substrate, a polymeric hydrogel positioned over at least a portion of each of the two angularly offset and non-perpendicular surfaces; a first primer set attached to the polymeric hydrogel that is positioned over the portion of a first of the two angularly offset and non-perpendicular surfaces; and a second primer set attached to the polymeric hydrogel that is positioned over the portion of a second of the two angularly offset and non-perpendicular surfaces, wherein the first and second primer sets are orthogonal.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 18, 2024
    Inventors: Jeffrey S. Fisher, Anthony Flannery, Sahngki Hong, Brinda Kodira Cariappa, Lewis J. Kraft
  • Publication number: 20230381733
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Application
    Filed: August 11, 2023
    Publication date: November 30, 2023
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger
  • Patent number: 11819843
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: November 21, 2023
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Publication number: 20230332224
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 19, 2023
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown
  • Patent number: 11779897
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Grant
    Filed: October 31, 2021
    Date of Patent: October 10, 2023
    Assignee: Illumina, Inc.
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger
  • Publication number: 20230272469
    Abstract: An example of a method includes providing a substrate with an exposed surface comprising a first chemical group, wherein the providing optionally comprises modifying the exposed surface of the substrate to incorporate the first chemical group; reacting the first chemical group with a first reactive group of a functionalized polymer molecule to form a functionalized polymer coating layer covalently bound to the exposed surface of the substrate; grafting a primer to the functionalized polymer coating layer by reacting the primer with a second reactive group of the functionalized polymer coating layer; and forming a water-soluble protective coating on the primer and the functionalized polymer coating layer. Examples of flow cells incorporating examples of the water-soluble protective coating are also disclosed herein.
    Type: Application
    Filed: May 9, 2023
    Publication date: August 31, 2023
    Inventors: Sean M. Ramirez, Brian D. Mather, Edwin Li, Sojeong Moon, Innsu Daniel Kim, Alexandre Richez, Ludovic Vincent, Xavier von Hatten, Hai Quang Tran, Maxwell Zimmerley, Julia Morrison, Gianluca Andrea Artioli, Krystal Sly, Hayden Black, Lewis J. Kraft, Hong Xie, Wei Wei, Ryan Sanford
  • Publication number: 20230259034
    Abstract: In a method, a resin layer of a stack (e.g., resin layer over sacrificial layer over transparent substrate) is imprinted to form a convex region including first region with first height and second region with second height <first height. Stack portions are etched around the convex region to expose a substrate portion. The stack is utilized to develop a curable layer to define a cured layer over the exposed substrate portion. The convex region and cured layer are etched. The resin layer and a sacrificial layer portion underlying the second region are removed. A second substrate portion is exposed and a third substrate portion remains covered by a remaining sacrificial layer portion. The cured layer is substantially co-planar with the remaining sacrificial layer portion. A depression is formed extending to the second substrate portion. The remaining sacrificial layer portion is utilized to define functionalized layers over different depression regions.
    Type: Application
    Filed: December 19, 2022
    Publication date: August 17, 2023
    Inventors: Jeffrey S. Fisher, Tanmay Ghonge, Sahngki Hong, Lewis J Kraft
  • Patent number: 11680292
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: June 20, 2023
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown
  • Patent number: 11667969
    Abstract: An example of a method includes providing a substrate with an exposed surface comprising a first chemical group, wherein the providing optionally comprises modifying the exposed surface of the substrate to incorporate the first chemical group; reacting the first chemical group with a first reactive group of a functionalized polymer molecule to form a functionalized polymer coating layer covalently bound to the exposed surface of the substrate; grafting a primer to the functionalized polymer coating layer by reacting the primer with a second reactive group of the functionalized polymer coating layer; and forming a water-soluble protective coating on the primer and the functionalized polymer coating layer. Examples of flow cells incorporating examples of the water-soluble protective coating are also disclosed herein.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: June 6, 2023
    Assignees: Illumina, Inc., Illumina Cambridge Limited, Illumina Singapore Pte. Ltd.
    Inventors: Sean M. Ramirez, Brian D. Mather, Edwin Li, Sojeong Moon, Innsu Daniel Kim, Alexandre Richez, Ludovic Vincent, Xavier von Hatten, Hai Quang Tran, Maxwell Zimmerley, Julia Morrison, Gianluca Andrea Artioli, Krystal Sly, Hayden Black, Lewis J. Kraft, Hong Xie, Wei Wei, Ryan Sanford
  • Publication number: 20230139821
    Abstract: In an example method, a first functionalized layer is deposited over a resin layer including multi-depth depressions separated by interstitial regions, each depression including a deep portion and a shallow portion adjacent to the deep portion; a photoresist is deposited over the first functionalized layer; an ultraviolet light dosage is directed, through the resin layer, whereby a first photoresist portion generates an insoluble photoresist and a second photoresist portion becomes a soluble photoresist; the soluble photoresist is removed to expose a portion of the first functionalized layer; the portion of the first functionalized layer is removed to expose a portion of the resin layer; a second functionalized layer is deposited over the insoluble photoresist, and over the exposed portion of the resin layer; the insoluble photoresist is removed to expose the first functionalized layer; and the first functionalized layer or the second functionalized layer is removed from the interstitial regions.
    Type: Application
    Filed: May 9, 2022
    Publication date: May 4, 2023
    Inventors: Jeffrey S. Fisher, Anthony Flannery, Sahngki Hong, Brinda Kodira Cariappa, Lewis J. Kraft
  • Publication number: 20230137978
    Abstract: A metal film is formed over a resin layer including a plurality of multi-depth depressions (MDP) separated by interstitial regions, each MDP including a deep portion and an adjacent shallow portion. A sacrificial layer is formed over the metal film. The sacrificial layer and metal film are sequentially dry etched to expose a resin layer surface at the shallow portion and interstitial regions. Resin layer portions are removed i) at the shallow portion to form a depression region having a surface directly adjacent to a surface at the deep portion and ii) at the interstitial regions to form new interstitial regions surrounding the deep portion and the depression region. First functionalized layer is deposited over the metal film, depression region, and new interstitial regions. The metal film is removed from the deep portion. Second functionalized layer is deposited over the surface at the deep portion. New interstitial regions are polished.
    Type: Application
    Filed: May 9, 2022
    Publication date: May 4, 2023
    Inventors: Jeffrey S. Fisher, Anthony Flannery, Sahngki Hong, Brinda Kodira Cariappa, Lewis J. Kraft, Brian D. Mather
  • Publication number: 20230002822
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Application
    Filed: June 14, 2022
    Publication date: January 5, 2023
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown
  • Publication number: 20220410146
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Publication number: 20220390348
    Abstract: An example of a flow cell includes a substrate; a plurality of reactive regions extending along the substrate; and a non-reactive region separating one of the plurality of reactive regions from an adjacent one of the plurality of reactive regions. Each of the plurality of reactive regions includes alternating first and second areas positioned along the reactive region. Each of the first areas includes a first primer set and each of the second areas includes a second primer set that is different than the first primer set. Either adjacent first and second areas directly abut each other, or) the first areas are positioned on protrusions and the second areas are positioned in depressions adjacent to the protrusions.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 8, 2022
    Inventors: Eric M. Brustad, Craig Michael Ciesla, Jeffrey S. Fisher, Sahngki Hong, Lewis J. Kraft
  • Publication number: 20220382147
    Abstract: In an example of a method for making a flow cell, a light sensitive material is deposited over a resin layer including depressions separated by interstitial regions, wherein the depressions overlie a first resin portion having a first thickness and the interstitial regions overlie a second resin portion having a second thickness that is greater than the first thickness. A predetermined ultraviolet light dosage that is based on the first and second thicknesses is directed through the resin layer, whereby the light sensitive material overlying the depressions is exposed to ultraviolet light and the second resin portion absorbs the ultraviolet light, thereby defining an altered light sensitive material at a first predetermined region over the resin layer. The altered light sensitive material is utilized to generate a functionalized layer at the first predetermined region or at a second predetermined region over the resin layer.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 1, 2022
    Inventors: Brinda Kodira Cariappa, Wayne N. George, Sahngki Hong, Lewis J. Kraft
  • Publication number: 20220379305
    Abstract: In an example of a method for making a flow cell, a metal material is sputtered over a transparent substrate including depressions separated by interstitial regions to form a metal film having a first thickness over the interstitial regions and having a second thickness over the depressions, the second thickness being about 30 nm or less and being at least ? times smaller than the first thickness. A light sensitive material is deposited over the metal film; and the metal film is used to develop the light sensitive material through the transparent substrate to define an altered light sensitive material at a first predetermined region over the transparent substrate. The altered light sensitive material is utilized to generate a functionalized layer at the first predetermined region or at a second predetermined region over the transparent substrate.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 1, 2022
    Inventors: Brinda Kodira Cariappa, Wayne N. George, Sahngki Hong, Lewis J. Kraft
  • Publication number: 20220331792
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 20, 2022
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Patent number: 11384392
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: July 12, 2022
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown
  • Publication number: 20220187710
    Abstract: In an example method, a water-soluble protective coating solution is applied over a bonding region and either i) a patterned region of a patterned structure or ii) a lane region of a non-patterned structure. The patterned region includes depressions having at least a polymeric hydrogel therein, and interstitial regions separating the depressions. The lane region includes a lane having at least the polymeric hydrogel therein. The water-soluble protective coating solution is dried to form a solid coating or a gel coating over the bonding region and over either i) the patterned region or ii) the lane region. Portions of the solid coating or the gel coating are selectively removed from the bonding region while leaving other portions of the solid coating or the gel coating over either i) the patterned region or ii) the lane region.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 16, 2022
    Inventors: Neil Brahma, Tyler J. Dill, Michelle Kate Fu, Brian A. Hanos, Sahngki Hong, Brinda Kodira Cariappa, Lewis J. Kraft
  • Patent number: 11318462
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 3, 2022
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan