Patents by Inventor Li Yao

Li Yao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200287539
    Abstract: A phase loss detection device, a compressor including the same, and a phase loss detection method are disclosed. The phase loss detection device may include a signal converting circuit and a processor. The signal converting circuit is configured to convert voltage signals corresponding to respective phases of multiphase alternating current (AC) power monitored from a motor. The processor is configured to receive the converted voltage signals from the signal converting circuit, and configured to calculate, based on the converted voltage signals, one or more phase angles between the respective voltage signals. The processor is configured to determine that phase loss occurs if any one or more of the calculated phase angles deviate from a nominal value of a corresponding phase angle of the multiphase AC power by a value higher than a predetermined threshold. The phase loss detection can be performed in a convenient, effective and reliable way.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: He Ma, Li Yao, Guocun Li, Bin Zhao, Zhiwei Shang, Yongjian Guo
  • Patent number: 10755811
    Abstract: A medical scan comparison system is operable to receive a medical scan via a network and to generate similar scan data. The similar scan data includes a subset of medical scans from a medical scan database and is generated by performing an abnormality similarity function to determine that a set of abnormalities included in the subset of medical scans compare favorably to an abnormality identified in the medical scan. At least one cross-sectional image is selected from each medical scan of the subset of medical scans for display on a display device associated with a user of the medical scan comparison system in conjunction with the medical scan.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 25, 2020
    Assignee: Enlitic, Inc.
    Inventors: Devon Bernard, Kevin Lyman, Li Yao, Anthony Upton, Ben Covington, Jeremy Howard
  • Patent number: 10748652
    Abstract: A medical scan image analysis system is operable to receive a plurality of medical scans that represent a three-dimensional anatomical region and include a plurality of cross-sectional image slices. A plurality of three-dimensional subregions corresponding to each of the plurality of medical scans are generated by selecting a proper subset of the plurality of cross-sectional image slices from each medical scan, and by further selecting a two-dimensional subregion from each proper subset of cross-sectional image slices. A learning algorithm is performed on the plurality of three-dimensional subregions to generate a fully convolutional neural network. Inference data corresponding to a new medical scan received via the network is generated by performing an inference algorithm on the new medical scan by utilizing the fully convolutional neural network. An inferred abnormality is identified in the new medical scan based on the inference data.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 18, 2020
    Assignee: Enlitic, Inc.
    Inventors: Li Yao, Devon Bernard, Kevin Lyman, Diogo Almeida, Jeremy Howard
  • Publication number: 20200259137
    Abstract: A curable composition includes a polyamide composition comprising a polyamide. The polyamide comprises a tertiary amide in the backbone thereof and is amine terminated. The curable composition also comprises an epoxy composition that includes an epoxy resin.
    Type: Application
    Filed: October 3, 2018
    Publication date: August 13, 2020
    Inventors: Li Yao, Rajdeep S. Kalgutkar, Mario A. Perez, Jeremy M. Higgins, Taesung Kim, Brett A. Beiermann
  • Publication number: 20200244116
    Abstract: Embodiments of the present disclosure provide a motor rotor and a motor. The motor rotor includes: multiple groups of laminations having inner bores and arranged alternately in an axial direction of the motor rotor. The motor includes a stator and the abovementioned motor rotor provided in the stator. The motor rotor and the motor according to embodiments of the present disclosure, for example, may reduce installation costs of the laminations and a rotor shaft in the motor rotor.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 30, 2020
    Inventors: Wanzhen Liu, Li Yao, Yan Lin, Guangqiang Liu, Zhenyu Wang, Weiping Tang, Meng Wang
  • Patent number: 10723652
    Abstract: Described herein are various antimicrobial soda lime glass articles that have improved resistance to discoloration when exposed to harsh conditions, including manufacturing conditions. The improved antimicrobial glass articles described herein generally include a SLG substrate that has a thickness, t; a compressive stress layer of about 0.15*t or greater; and an antimicrobial agent-containing region having an antimicrobial agent and a thickness less than the thickness of the compressive stress layer. Roughly 2 to 20 microns of the primary surfaces of the glass substrate can be removed prior to development of the compressive stress and antimicrobial agent-containing region. In some aspects, prior-annealed and tempered, or prior-annealed, SLG is employed as the substrate. In some aspects, the substrate includes tin at one surface. The improved SLG substrates experience substantially no discoloration when exposed to harsh conditions. Methods of making and using the glass articles are also described.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 28, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Hongmei Hu, Jennifer Lynn Hunt, Sumalee Likitvanichkul, Ananthanarayanan Subramanian, Li Yao
  • Publication number: 20200186057
    Abstract: Embodiments of the present invention provide a method for controlling compressor braking, a frequency converter and a variable speed compressor. The method includes steps of: determining to brake a compressor, wherein a brake circuit includes three switching units and the three switching units are respectively electrically connected to three phases of windings of a motor of the compressor; actuating two of the three switching units to short-circuit two phases of windings of the motor. The two phases of windings of the motor are short-circuited by controlling the three switching units to generate braking torque, such that the compressor is braked without introducing a DC voltage, and thus the braking energy consumption is reduced. Besides, by turning on only two switches at a time, the switching abrasion is reduced, and the overall service life of the three switching units is effectively improved.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 11, 2020
    Inventors: Shizhong Ji, Li Yao, Yingke Sun, Qingyue Meng
  • Publication number: 20200160954
    Abstract: A peer-review flagging system is operable to receive a medical scan and a medical report written by a medical professional in conjunction with review of the medical scan. Automated assessment data is generated by performing an inference function on the medical scan by utilizing a computer vision model trained on a plurality of medical scans. Human assessment data is generated by performing an extraction function on the medical report. Consensus data is generated by comparing the automated assessment data to the first human assessment data. A peer-review notification is transmitted to a client device for display. The peer-review notification indicates the medical scan is flagged for peer-review in response to determining the consensus data indicates the automated assessment data compares unfavorably to the human assessment data.
    Type: Application
    Filed: March 20, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
  • Publication number: 20200160966
    Abstract: A triage routing system is operable to receive a medical scan via a receiver. Inference data for the medical scan is generated by performing an inference function, where the inference function utilizes a computer-vision model trained on a plurality of medical scans. One of a plurality of medical professionals is selected to review the medical scan based on the inference data. Triage routing data that indicates the medical scan and the one of the plurality of medical professionals is generated. The medical scan is transmitted to a client device associated with the one of the plurality of medical professionals for display via a display device in accordance with the triage routing data.
    Type: Application
    Filed: March 18, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington
  • Publication number: 20200160946
    Abstract: A longitudinal data quality assurance system is operable to receive a set of medical scans corresponding to a same first patient. A first chronologically ordered list of the set of medical scans is generated based on a corresponding first set of dates, where each of the corresponding first set of dates are extracted from a headers of the set of medical scans. Quality assurance data is generated for the first chronologically ordered list by performing at least one quality assurance function on at least one of the set of medical scans. A second chronologically ordered list that includes a first subset of the first set of medical scans is generated to rectify at least one continuity error of the first chronologically ordered list, indicated in the quality assurance data. The second chronologically ordered list is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 18, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Eric C. Poblenz, Li Yao, Keith Lui, Kevin Lyman
  • Publication number: 20200160980
    Abstract: An electrocardiogram (ECG) interpretation system is operable to receive a captured image of an ECG printout. A waveform detection function is performed on the captured image to determine a plurality of locations of a plurality of ECG waveforms in the captured image. A plurality of waveform images are generated by partitioning the captured image based on the plurality of locations, where each of the plurality of waveform images includes one of the plurality of ECG waveforms. A plurality of pseudo-raw ECG signal data is generated by performing a signal reconstruction function on each of the plurality of waveform images, where each of the plurality of pseudo-raw ECG signal data corresponds to one of the plurality of waveform images. Diagnosis data is generated by performing a diagnosing function on the plurality of pseudo-raw ECG signal data. The diagnosis data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: May 10, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao
  • Publication number: 20200160970
    Abstract: A medical scan header standardization system is operable to determine a set of standard DICOM headers based on determining a standard set of fields and based on further determining a standard set of entries for each of the standard set of fields. A DICOM image is received via a network, and a header of the DICOM image is determined to be incorrect. A selected one of the set of standard DICOM headers to replace the header of the DICOM image is determined. The selected one of the set of standard DICOM headers is transmitted, via the network, to a medical scan database for storage in conjunction with the DICOM image.
    Type: Application
    Filed: March 25, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Jordan Prosky, Eric C. Poblenz, Chris Croswhite, Ben Covington
  • Publication number: 20200160983
    Abstract: A medical scan triaging system is operable to generate a global abnormality probability for each of a plurality of medical scans by utilizing a computer vision model trained on a training set of medical scans. A triage probability threshold is determined based on user input to a client device. A first subset of the plurality of medical scans, designated for human review, is determined by identifying medical scans with a corresponding global abnormality probability that compares favorably to the triage probability threshold. A second subset of the plurality of medical scans, designated as normal, is determined by identifying ones of the plurality of medical scans with a corresponding global abnormality probability that compares unfavorably to the triage probability threshold. Transmission of the first subset of the plurality of medical scans to a plurality of client devices associated with a plurality of users is facilitated.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20200160301
    Abstract: A medical billing verification system can be operable to determining at least one medical code corresponding to a medical report for a patient, where the at least one medical code indicates a medical procedure that was performed on the patient a billing rate that corresponds to the at least one medical code can be determined by utilizing a mapping of medical codes to billing rates. Billing data corresponding to the medical procedure that was performed on the patient can be received, where the billing data indicates an amount that was billed for the medical procedure. Billing verification data can be generated by comparing the billing rate to the billing data. An improper billing notification can be generated for transmission to a client device via the network for display via a display device in response to the billing verification data indicating the billing rate compares unfavorably to the billing data.
    Type: Application
    Filed: March 26, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Anthony Upton
  • Publication number: 20200160942
    Abstract: An automatic patient recruitment system is operable to determine a set of eligibility criteria, which includes abnormality criteria and other patient criteria, for each of a plurality of pharmaceutical studies. Abnormality data is generated for received medical scans by performing at least one inference function on image data of each medical scans by utilizing a computer vision model trained on a training set of medical scans. One of a plurality of patients is identified to be eligible for a pharmaceutical study by determining a medical scan of the patient has abnormality data that compares favorably to the abnormality criteria of the pharmaceutical study and by determining that the patient has patient data that compares favorably to the other patient criteria of the pharmaceutical study. A notification indicating the identified patient is eligible for the pharmaceutical study is generated for transmission to a client device.
    Type: Application
    Filed: May 10, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Anthony Upton, Li Yao, Ben Covington, Keith Lui
  • Publication number: 20200160978
    Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 21, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Publication number: 20200160975
    Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
    Type: Application
    Filed: March 12, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman, Lionel Lints, Ben Covington, Anthony Upton
  • Publication number: 20200160974
    Abstract: A global multi-label generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Global probability data that includes a set of global probability values each indicating a probability that a corresponding one of the set of abnormality classes is present in the new medical scan is generated based on the probability matrix data for transmission to a client device.
    Type: Application
    Filed: March 12, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Li Yao, Jordan Prosky, Eric C. Poblenz, Kevin Lyman
  • Publication number: 20200160964
    Abstract: A clinical trial re-evaluation system is operable to perform at least one assessment function on a set of medical scans for each of a first subset of a set of patients of a failed clinical trial to generate automated assessment data for each of the first subset of the set of patients. The first subset of the set of patients corresponds to a subset of human assessment data determined to have failed to meet criteria of the clinical trial. Patient re-evaluation data is generated for each of the first subset of the set of patients by comparing the automated assessment data to the criteria. The patient re-evaluation data for a second subset of the first subset of the set of patients indicates the automated assessment data passes the criteria. Trial re-evaluation data is generated based on the patient re-evaluation data for transmission to a computing device for display.
    Type: Application
    Filed: March 14, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Keith Lui, Anthony Upton, Li Yao, Ben Covington
  • Publication number: 20200160520
    Abstract: A multi-model medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans and corresponding labeling data. A plurality of fine-tuned models corresponding to one of a plurality of abnormality types can be generated by performing a fine-tuning step on the generic model. Abnormality detection data can be generated for a new medical scan by performing utilizing the generic model. One of the plurality of abnormality types is determined to be detected in the new medical scan based on the abnormality detection data, and a fine-tuned model that corresponds to the abnormality type is selected. Additional abnormality data is generated for the new medical scan by utilizing the selected fine-tuned model. The additional abnormality data can be transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton