Patents by Inventor Linda G. Cima

Linda G. Cima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7008634
    Abstract: Described are compositions with tethered growth effector molecules, and methods of using these compositions for growing cells and tissues. Growth effector molecules, including growth factors and extracellular matrix molecules, are flexibly tethered to a solid substrate. The compositions can be used either in vitro or in vivo to grow cells and tissues. By tethering the growth factors, they will not diffuse away from the desired location. By making the attachment flexible, the growth effector molecules can more naturally bind to cell surface receptors. A significant feature of these compositions and methods is that they enhance the biological response to the growth factors. The method also offers other advantages over the traditional methods, in which growth factors are delivered in soluble form: (1) the growth factor is localized to a desired target cell population; (2) significantly less growth factor is needed to exert a biologic response.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: March 7, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Edward W. Merrill, Philip R. Kuhl
  • Publication number: 20040214997
    Abstract: Disclosed are compositions with tethered growth effector molecules, and methods of using these compositions for growing cells and tissues. Growth effector molecules, including growth factors and extracellular matrix molecules, are flexibly tethered to a solid substrate. The compositions can be used either in vitro or in vivo to grow cells and tissues. By tethering the growth factors, they will not diffuse away from the desired location. By making the attachment flexible, the growth effector molecules can more naturally bind to cell surface receptors. A significant feature of these compositions and methods is that they enhance the biological response to the growth factors. The new method also offers other advantages over the traditional methods, in which growth factors are delivered in soluble form: (1) the growth factor is localized to a desired target cell population; (2) significantly less growth factor is needed to exert a biologic response.
    Type: Application
    Filed: March 3, 1995
    Publication date: October 28, 2004
    Inventors: LINDA G. CIMA, EDWARD W. MERRILL, PHILIP R. KUHL
  • Patent number: 6530958
    Abstract: Solid free-form (SSF) techniques for making medical devices for implantation and growth of cells from polymers or polymer/inorganic composites using computer aided design are described. Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP). The devices can incorporate inorganic particles to improve the strength of the walls forming the pores within the matrix and to provide a source of mineral for the regenerating tissue. The devices can contain tissue adhesion peptides, or can be coated with materials which reduce tissue adhesion. The macrostructure and porosity of the device can be manipulated by controlling printing parameters. Most importantly, these features can be designed and tailored using computer assisted design (CAD) for individual patients to optimize therapy.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: March 11, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Michael J. Cima
  • Patent number: 6176874
    Abstract: Solid free-form fabrication (SFF) methods are used to manufacture devices for allowing tissue regeneration and for seeding and implanting cells to form organ and structural components, which can additionally provide controlled release of bioactive agents, wherein the matrix is characterized by a network of lumens functionally equivalent to the naturally occurring vasculature of the tissue formed by the implanted cells, and which can be lined with endothelial cells and coupled to blood vessels at the time of implantation to form a vascular network throughout the matrix. The SFF methods can be adapted for use with a variety of polymeric, inorganic and composite materials to create structures with defined compositions, strengths, and densities, using computer aided design (CAD). Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP).
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 23, 2001
    Assignees: Masschusetts Institute of Technology, Children's Medical Center Corporation
    Inventors: Joseph P. Vacanti, Linda G. Cima, Michael J. Cima
  • Patent number: 6139574
    Abstract: Solid free-form fabrication (SFF) methods are used to manufacture devices for allowing tissue regeneration and for seeding and implanting cells to form organ and structural components, which can additionally provide controlled release of bioactive agents, wherein the matrix is characterized by a network of lumens functionally equivalent to the naturally occurring vasculature of the tissue formed by the implanted cells, and which can be lined with endothelial cells and coupled to blood vessels at the time of implantation to form a vascular network throughout the matrix. The SFF methods can be adapted for use with a variety of polymeric, inorganic and composite materials to create structures with defined compositions, strengths, and densities, using computer aided design (CAD).Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP).
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: October 31, 2000
    Assignees: Children's Medical Center Corporation, Massachusetts Institute of Technology
    Inventors: Joseph P. Vacanti, Linda G. Cima, Michael J. Cima
  • Patent number: 6045818
    Abstract: Disclosed are compositions with tethered growth effector molecules, and methods of using these compositions for growing cells and tissues. Growth effector molecules, including growth factors and extracellular matrix molecules, are flexibly tethered to a solid substrate. The compositions can be used either in vitro or in vivo to grow cells and tissues. By tethering the growth factors, they will not diffuse away from the desired location. By making the attachment flexible, the growth effector molecules can more naturally bind to cell surface receptors. A significant feature of these compositions and methods is that they enhance the biological response to the growth factors. The new method also offers other advantages over the traditional methods, in which growth factors are delivered in soluble form: (1) the growth factor is localized to a desired target cell population; (2) significantly less growth factor is needed to exert a biologic response.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: April 4, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Edward W. Merrill, Philip R. Kuhl
  • Patent number: 5906828
    Abstract: Disclosed are compositions with tethered growth effector molecules, and methods of using these compositions for growing cells and tissues. Growth effector molecules, including growth factors and extracellular matrix molecules, are flexibly tethered to a solid substrate. The compositions can be used either in vitro or in vivo to grow cells and tissues. By tethering the growth factors, they will not diffuse away from the desired location. By making the attachment flexible, the growth effector molecules can more naturally bind to cell surface receptors. A significant feature of these compositions and methods is that they enhance the biological response to the growth factors. The new method also offers other advantages over the traditional methods, in which growth factors are delivered in soluble form: (1) the growth factor is localized to a desired target cell population; (2) significantly less growth factor is needed to exert a biologic response.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: May 25, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Edward W. Merrill, Philip R. Kuhl
  • Patent number: 5869170
    Abstract: Solid free-form techniques for making medical devices for controlled release of bioactive agent and implantation and growth of cells are described using computer aided design. Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP). The macrostructure and porosity of the device can be manipulated by controlling printing parameters. Most importantly, these features can be designed and tailored using computer assisted design (CAD) for individual patients to optimize therapy.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: February 9, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Michael J. Cima
  • Patent number: 5518680
    Abstract: Solid free-form techniques for making medical devices for implantation and growth of cells from polymers or polymer/inorganic composites using computer aided design are described. Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP). The devices can incorporate inorganic particles to improve the strength of the walls forming the pores within the matrix and to provide a source of mineral for the regenerating tissue. The devices can contain tissue adhesion peptides, or can be coated with materials which reduce tissue adhesion. The macrostructure and porosity of the device can be manipulated by controlling printing parameters. Most importantly, these features can be designed and tailored using computer assisted design (CAD) for individual patients to optimize therapy.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: May 21, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Michael J. Cima
  • Patent number: 5514378
    Abstract: Biocompatible porous polymer membranes are prepared by dispersing salt particles in a biocompatible polymer solution. The solvent in which the polymer is dissolved is evaporated to produce a polymer/salt composite membrane. The polymer can then be heated and cooled at a predetermined constant rate to provide the desired amount of crystallinity. Salt particles are leached out of the membrane by immersing the membrane in water or another solvent for the salt but not the polymer. The membrane is dried, resulting in a porous, biocompatible membrane to which dissociated cells can attach and proliferate. A three-dimensional structure can be manufactured using the polymer membranes by preparing a contour drawing of the shape of the structure, determining the dimensions of thin cross-sectional layers of the shape, forming porous polymer membranes corresponding to the dimensions of the layers, and laminating the membranes together to form a three-dimensional matrix having the desired shape.
    Type: Grant
    Filed: February 1, 1993
    Date of Patent: May 7, 1996
    Assignees: Massachusetts Institute of Technology, Children's Medical Center Corporation
    Inventors: Antonios G. Mikos, Georgios Sarakinos, Joseph P. Vacanti, Robert S. Langer, Linda G. Cima
  • Patent number: 5490962
    Abstract: Solid free-form techniques for making medical devices for controlled release of bioactive agent and implantation and growth of Cells are described using computer aided design. Examples of SFF methods include stereo-lithography (SLA), selective laser sintering (SLS), ballistic particle manufacturing (BPM), fusion deposition modeling (FDM), and three dimensional printing (3DP). The macrostructure and porosity of the device can be manipulated by controlling printing parameters. Most importantly, these features can be designed and tailored using computer assisted design (CAD) for individual patients to optimize therapy.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: February 13, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Michael J. Cima