Patents by Inventor Lisa M. Larsen-Moss

Lisa M. Larsen-Moss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6030664
    Abstract: A method and apparatus for high velocity dual coating optical fibers includes passing the fiber to be coated through an entrance die into a coating reservoir, to which liquid coating material is supplied under pressure. The diameter of the die passage and the pressure of the fluid is sufficient to prevent air from entering the reservoir. The coated fiber is passed through a centering and sizing die wherein the recirculation of excess coating material is controlled to produce centering forces on the fiber at the high fiber velocity, and wherein the initial coating is sized. The fiber is then passed through a second coating reservoir into an exit die which sizes the second coating. Upon leaving the exit die, the coatings are cured.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: February 29, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Frank V. DiMarcello, Arthur C. Hart, Richard G. Huff, Karen S. Kranz, Lisa M. Larsen-Moss
  • Patent number: 5294260
    Abstract: A curing apparatus which is supported from a base plate (68) includes a housing which includes guide members for holding a magnetron and one portion of an elliptical chamber in which is disposed a longitudinally extending bulb. Outside the housing are triangular shaped gusset plates which are adapted to mate with a pivotally moveable portion (95) in which is disposed a mating portion of the elliptical chamber and a center tube through which the drawn optical fiber extends. An exhaust system is supported from the gusset plates. Advantageously, the pivotally moveable portion may be opened pivotally to expose the center tube and facilitate removal of the center tube and its replacement. Also advantageously, the entire curing apparatus may be aligned with the fiber by moving the base plate until the drawn fiber is centered within the center tube. In yet another advantage, the present invention incorporates a plurality of slidable plates to provide easy access to the magnetrons.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: March 15, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Lisa M. Larsen-Moss, Vernon W. Pidgeon, Jr.
  • Patent number: 5104433
    Abstract: Methods are provided for making an optical fiber transmission medium which includes optical fiber (21) provided with a coating system (31) typically including two layers each of a different coating material. An inner layer (32) of a first coating material is called the primary coating and an outer layer is termed the secondary. In order to achieve desired performance characteristics, performance is related to properties of a coating system. The coating materials have well defined moduli and the second coating material has an elongation which is substantially less than in prior secondary coating materials. Adhesion levels which are optimized rather than maximized are substantially stable with respect to time. Curing of the coating materials may be accomplished simultaneously or in tandem with the application separately of the coating materials.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: April 14, 1992
    Assignee: AT&T Bell Laboratories
    Inventors: J. Thomas Chapin, Addison G. Hardee, Jr., Lisa M. Larsen-Moss, Charles M. Leshe, Bob J. Overton, John W. Shea, Carl R. Taylor, John M. Turnipseed
  • Patent number: 4962992
    Abstract: An optical fiber transmission medium (30) ) includes optical fiber (21) provided with a coating system (31) typically including two layers each of a different coating material. An inner layer (32) of a first coating material is called the primary coating and an outer layer is termed the secondary. In order to achieve desired performance characteristics, performance is related to properties of a coating system. The coating materials have well defined moduli and the second coating material has an elongation which is substantially less than in prior secondary coating materials. Adhesion levels which are optimized rather than maximized are substantially stable with respect to time. Curing of the coating materials may be accomplished simultaneously or in tandem with the application separately of the coating materials.
    Type: Grant
    Filed: May 15, 1989
    Date of Patent: October 16, 1990
    Assignee: AT&T Bell Laboratories
    Inventors: J. Thomas Chapin, Addison G. Hardee, Jr., Lisa M. Larsen-Moss, Charles M. Leshe, Bob J. Overton, John W. Shea, Carl R. Taylor, John M. Turnipseed