Patents by Inventor Logan Scott

Logan Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6839539
    Abstract: A RF signal repeater system is added to a wireless communications network which increases user data rates at the periphery of the cellular coverage area by boosting the downlink (base station to mobile user) signal and uplink (mobile user to base station) signal. The RF signal repeater system includes a signal tagging means that adds a unique electronic signature to the repeated signal such that position determination errors due to a non-line of sight propagation path can be corrected. The repeated signal is received and processed with a location measurement unit to determine the time of arrival and to extract the signal tag of the repeated signal. The time of arrival measurement and recovered signal tag are then processed at a mobile location center to determine the true position of the transmitter.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: January 4, 2005
    Assignee: Intel Corporation
    Inventors: Randolph L. Durrant, Logan Scott, John K. Reece
  • Publication number: 20040186785
    Abstract: A process (and system) for defining transactions in an information technology offering, includes listing each transaction and service that may be delivered over a computer network under the information technology offering, and partitioning each transaction and service into different classes.
    Type: Application
    Filed: March 19, 2003
    Publication date: September 23, 2004
    Applicant: International Business Machines Corporation
    Inventors: Mack Basil, Giuseppe Paleologo, Logan Scott, Samer Takriti
  • Publication number: 20040097190
    Abstract: A RF signal repeater system is added to a wireless communications network which increases user data rates at the periphery of the cellular coverage area by boosting the downlink (base station to mobile user) signal and uplink (mobile user to base station) signal. The RF signal repeater system includes a signal tagging means that adds a unique electronic signature to the repeated signal such that position determination errors due to a non-line of sight propagation path can be corrected. The repeated signal is received and processed with a location measurement unit to determine the time of arrival and to extract the signal tag of the repeated signal. The time of arrival measurement and recovered signal tag are then processed at a mobile location center to determine the true position of the transmitter.
    Type: Application
    Filed: November 18, 2003
    Publication date: May 20, 2004
    Inventors: Randolph L. Durrant, Logan Scott, John K. Reece
  • Publication number: 20040078594
    Abstract: A data loader device is used to convey digital data in a secure manner to another device. The data loader may be fixed (referred to as a Class_A loader) or portable (referred to as a Class_B loader). The data loader encrypts the digital data using a location-identity that permits the digital data to be transferred only if the data loader is disposed at an appropriate location. The fixed data loader remains in a stationary location, and a device to be loaded is brought to the data loader for loading. The portable data loader can be loaded by the fixed data loader, and then transported to another location to load a recipient device. The digital data that is conveyed is unrestricted in nature, and can include keys, navigational information, watermarking parameters, or any other digital content requiring secure delivery. In an embodiment, the data loader device includes a “no-move” system that precludes compromise of data contained therein if the data loader device is moved.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Inventor: Logan Scott
  • Publication number: 20040010368
    Abstract: An assisted GPS signal detection and processing system enables an end user to obtain position information from satellite navigation signals in indoor environments that have excess signal attenuation. The system includes a master navigation signal receiver having an antenna disposed with clear sky access to a plurality of navigation satellites. The master navigation signal receiver receives satellite navigation signals from the plurality of navigation satellites, and relays an assisted satellite navigation signal to a plurality of end user signal receivers via a medium. The assisted navigation signal includes at least one of satellite location information, clock correction information, and frequency discipline information. The end user signal receivers each have an antenna for receiving the satellite navigation signals directly. The end user signal receivers are also coupled to the medium to receive the assisted navigation signal from the master navigation signal receiver.
    Type: Application
    Filed: July 10, 2002
    Publication date: January 15, 2004
    Inventor: Logan Scott
  • Patent number: 6522642
    Abstract: A receiver system for antenna diversity employing a single backhaul cable. A single backhaul cable couples a receiver to a plurality of antennas. The signals from the antennas are combined onto the single backhaul cable using frequency offsets, spread spectrum code division, time division, or a combination thereof. At the receiver, the signals from the antennas are decoupled. In the case of the frequency offsets, the antenna signals are decoupled by splitting the backhaul signal into a plurality of duplicate signals, frequency shifting selected ones of the duplicate signals, and correlating said frequency shifted signals. In the case of spread spectrum code division, the antenna signals are decoupled by splitting the backhaul signal into a plurality of duplicate signals and demultiplexing each of the duplicate signals with a different spread spectrum code. One or more antennas may be selected for communication in response decoupling the antenna signals.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: February 18, 2003
    Assignee: Intel Corporation
    Inventor: Logan Scott
  • Patent number: 6501955
    Abstract: A RF signal repeater system is added to a wireless communications network which increases user data rates at the periphery of the cellular coverage area by boosting the downlink (base station to mobile user) signal and uplink (mobile user to base station) signal. The RF signal repeater system includes a signal tagging means that adds a unique electronic signature to the repeated signal such that position determination errors due to a non-line of sight propagation path can be corrected. The repeated signal is received and processed with a location measurement unit to determine the time of arrival and to extract the signal tag of the repeated signal. The time of arrival measurement and recovered signal tag are then processed at a mobile location center to determine the true position of the transmitter.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: December 31, 2002
    Assignee: Intel Corporation
    Inventors: Randolph L. Durrant, Logan Scott, John K. Reece
  • Publication number: 20020155838
    Abstract: A RF signal repeater system is added to a wireless communications network which increases user data rates at the periphery of the cellular coverage area by boosting the downlink (base station to mobile user) signal and uplink (mobile user to base station) signal. The RF signal repeater system includes a signal tagging means that adds a unique electronic signature to the repeated signal such that position determination errors due to a non-line of sight propagation path can be corrected. The repeated signal is received and processed with a location measurement unit to determine the time of arrival and to extract the signal tag of the repeated signal. The time of arrival measurement and recovered signal tag are then processed at a mobile location center to determine the true position of the transmitter.
    Type: Application
    Filed: June 17, 2002
    Publication date: October 24, 2002
    Inventors: Randolph L. Durrant, Logan Scott, John K. Reece
  • Patent number: 6388997
    Abstract: A system and method for time division duplex communication over a single frequency band wherein guard time overhead is reduced by active adjustment of reverse link transmission timing as a function of round trip propagation time. A time frame is divided into a plurality of time slots, during each of which the base station transmits to a user station and the user station transmits to the base station. Communication is initiated by a round trip timing transaction. In response to a general polling message from the base station, a user station seeking to establish communication transmits a short reply message. The base station calculates the distance of the user station by measuring the propagation delay with respect to receipt of the reply message. The base station sends a timing adjustment command to the user station instructing the user station to advance or retard its timing according to the calculated distance, so as to minimize guard times between time slots.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: May 14, 2002
    Assignee: Xircom Wireless, Inc.
    Inventor: Logan Scott
  • Patent number: 6366566
    Abstract: A system for time division multiplexed communication over a single frequency band in which guard time overhead is reduced by active adjustment of reverse link transmission timing as a function of round trip propagation time. In one embodiment, during a first portion of a time frame, a base station issues a single burst segmented into time slots comprising data directed to each user station. After a single collective guard time, the user stations respond, one by one, in allocated time slots on the same frequency as the base station, with only minimal guard times between each reception. In order to prevent interference among the user transmissions, the base station measures the round trip propagation time for each user station and commands the user stations to advance or retard their transmission timing as necessary.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: April 2, 2002
    Assignee: Xircom Wireless, Inc.
    Inventor: Logan Scott
  • Patent number: 6363107
    Abstract: In a first embodiment of the invention, a concatenated preamble code is formed by a kronecker product between two subcodes of the same or different lengths. The subcodes have favorable correlation properties and may be Barker codes, minimum peak sidelobe codes, Gold codes, Kasami codes, Boztas codes, or other codes. At the receiver a two-stage processor is used to detect the concatenated preamble code. The two-stage processor comprises a series of two filters, one of which is preferably a mismatched filter. In another aspect of the invention, a repeated codeword preamble is formed from a series of the same repeated short subcode. The short subcode may be an augmented or truncated odd-length code. At the receiver a single matched filter is preferably used to generate a series of spikes separated by the period of the subcode. An alert/confirm detector non-coherently adds together individual correlation spikes and reject false alarms.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: March 26, 2002
    Assignee: Xircom Wireless, Inc.
    Inventor: Logan Scott
  • Patent number: 6356607
    Abstract: In a first embodiment of the invention, a concatenated preamble code is formed by a kronecker product between two subcodes of the same or different lengths. The subcodes have favorable correlation properties and may be Barker codes, minimum peak sidelobe codes, Gold codes, Kasami codes, Bozta codes, or other codes. At the receiver a two-stage processor is used to detect the concatenated preamble code. The two-stage processor comprises a series of two filters, one of which is preferably a mismatched filter. In another aspect of the invention, a repeated codeword preamble is formed from a series of the same repeated short subcode. The short subcode may be an augmented or truncated odd-length code. At the receiver a single matched filter is preferably used to generate a series of spikes separated by the period of the subcode. An alert/confirm detector non-coherently adds together individual correlation spikes and reject false alarms.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: March 12, 2002
    Assignee: Omnipoint Corporation
    Inventors: Logan Scott, Robert Monroe
  • Patent number: 6154486
    Abstract: In a first embodiment of the invention, a concatenated preamble code is formed by a kronecker product between two subcodes of the same or different lengths. The subcodes have favorable correlation properties and may be Barker codes, minimum peak sidelobe codes, Gold codes, Kasami codes, Boztas codes, or other codes. At the receiver a two-stage processor is used to detect the concatenated preamble code. The two-stage processor comprises a series of two filters, one of which is preferably a mismatched filter. In another aspect of the invention, a repeated codeword preamble is formed from a series of the same repeated short subcode. The short subcode may be an augmented or truncated odd-length code. At the receiver a single matched filter is preferably used to generate a series of spikes separated by the period of the subcode. An alert/confirm detector non-coherently adds together individual correlation spikes and reject false alarms.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: November 28, 2000
    Assignee: Omnipoint Corporation
    Inventors: Logan Scott, Robert Monroe
  • Patent number: 6141373
    Abstract: In a first embodiment of the invention, a concatenated preamble code is formed by a kronecker product between two subcodes of the same or different lengths. The subcodes have favorable correlation properties and may be Barker codes, minimum peak sidelobe codes, Gold codes, Kasami codes, Boztas codes, or other codes. At the receiver a two-stage processor is used to detect the concatenated preamble code. The two-stage processor comprises a series of two filters, one of which is preferably a mismatched filter. In another aspect of the invention, a repeated codeword preamble is formed from a series of the same repeated short subcode. The short subcode may be an augmented or truncated odd-length code. At the receiver a single matched filter is preferably used to generate a series of spikes separated by the period of the subcode. An alert/confirm detector non-coherently adds together individual correlation spikes and reject false alarms.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: October 31, 2000
    Assignee: Omnipoint Corporation
    Inventor: Logan Scott
  • Patent number: 6094421
    Abstract: A system and method for time division duplex communication over a single frequency band wherein guard time overhead is reduced by active adjustment of reverse link transmission timing as a function of round trip propagation time. A time frame is divided into a plurality of time slots, during each of which the base station transmits to a user station and the user station transmits to the base station. Communication is initiated by a round trip timing transaction. In response to a general polling message from the base station, a user station seeking to establish communication transmits a short reply message. The base station calculates the distance of the user station by measuring the propagation delay with respect to receipt of the reply message. The base station sends a timing adjustment command to the user station instructing the user station to advance or retard its timing according to the calculated distance, so as to minimize guard times between time slots.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: July 25, 2000
    Assignee: Omnipoint Corporation
    Inventor: Logan Scott
  • Patent number: 6049538
    Abstract: A system for time division multiplexed communication over a single frequency band in which guard time overhead is reduced by active adjustment of reverse link transmission timing as a function of round trip propagation time. In one embodiment, during a first portion of a time frame, a base station issues a single burst segmented into time slots comprising data directed to each user station. After a single collective guard time, the user stations respond, one by one, in allocated time slots on the same frequency as the base station, with only minimal guard times between each reception. In order to prevent interference among the user transmissions, the base station measures the round trip propagation time for each user station and commands the user stations to advance or retard their transmission timing as necessary.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: April 11, 2000
    Assignee: Omnipoint Corporation
    Inventor: Logan Scott
  • Patent number: 6041046
    Abstract: A technique for cyclic time hopping in a multiple access communication system, wherein each time frame of a TDMA system is divided into multiple time slots. A plurality of user stations, one for each time slot, communicate with a base station. Each user station regularly varies its relative time slot position in a pseudo-random pattern. Orthogonal time hopping patterns are determined from a root pattern according to a predetermined equation or relationship. The effect of transmitting bursts in a pseudo-random pattern is to break up the otherwise strict periodicity of TDMA bursts, and to produce a more noiselike spectrum for switching transients, thereby reducing the level of interfering spectral components from a TDMA transmission source. In some embodiments, the time hopping pattern may be restricted to only odd or even time slots. In such embodiments, a dead time slot may be declared periodically so as to increase the apparent randomness of the user station transmission patterns.
    Type: Grant
    Filed: July 14, 1995
    Date of Patent: March 21, 2000
    Assignee: Omnipoint Corporation
    Inventors: Logan Scott, Claude M. Williams
  • Patent number: 5987079
    Abstract: In a first embodiment of the invention, a concatenated preamble code is formed by a kronecker product between two subcodes of the same or different lengths. The subcodes have favorable correlation properties and may be Barker codes, minimum peak sidelobe codes, Gold codes, Kasami codes, Bozta codes, or other codes. At the receiver a two-stage processor is used to detect the concatenated preamble code. The two-stage processor comprises a series of two filters, one of which is preferably a mismatched filter. In another aspect of the invention, a repeated codeword preamble is formed from a series of the same repeated short subcode. The short subcode may be an augmented or truncated odd-length code. At the receiver a single matched filter is preferably used to generate a series of spikes separated by the period of the subcode. An alert/confirm detector non-coherently adds together individual correlation spikes and reject false alarms.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: November 16, 1999
    Assignee: Omnipoint Corporation
    Inventors: Logan Scott, Robert Monroe
  • Patent number: 5959980
    Abstract: A system and method for time division duplex communication over a single frequency band wherein guard time overhead is reduced by active adjustment of reverse link transmission timing as a function of round trip propagation time. A time frame is divided into a plurality of time slots, during each of which the base station transmits to a user station and the user station transmits to the base station. Communication is initiated by a round trip timing transaction. In response to a general polling message from the base station, a user station seeking to establish communication transmits a short reply message. The base station calculates the distance of the user station by measuring the propagation delay with respect to receipt of the reply message. The base station sends a timing adjustment command to the user station instructing the user station to advance or retard its timing according to the calculated distance, so as to minimize guard times between time slots.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 28, 1999
    Assignee: Omnipoint Corporation
    Inventor: Logan Scott
  • Patent number: 5859842
    Abstract: A receiver system for antenna diversity employing a single backhaul cable. A single backhaul cable couples a receiver to a plurality of antennas. The signals from the antennas are combined onto the single backhaul cable using frequency offsets, spread spectrum code division, time division, or a combination thereof. At the receiver, the signals from the antennas are decoupled. In the case of frequency offsets, the antenna signals are decoupled by splitting the backhaul signal into a plurality of duplicate signals, frequency shifting selected ones of the duplicate signals, and correlating said frequency shifted signals. In the case of spread spectrum code division, the antenna signals are decoupled by splitting the backhaul signal into a plurality of duplicate signals and demultiplexing each of the duplicate signals with a different spread spectrum code. One or more antennas may be selected for communication in response decoupling the antenna signals.
    Type: Grant
    Filed: November 8, 1995
    Date of Patent: January 12, 1999
    Assignee: Omnipoint Corporation
    Inventor: Logan Scott