Patents by Inventor Louis Jung

Louis Jung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950363
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 2, 2024
    Assignee: DexCom, Inc.
    Inventors: Sean Frick, Louis Jung, David Lari
  • Publication number: 20240049388
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Application
    Filed: October 17, 2023
    Publication date: February 8, 2024
    Inventors: Sean Frick, Louis Jung, David Lari
  • Patent number: 11682830
    Abstract: A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: June 20, 2023
    Assignee: Verily Life Sciences LLC
    Inventors: Stephen O'Driscoll, Anil Kumar Ram Rakhyani, Louis Jung
  • Publication number: 20230127770
    Abstract: One example system includes a biosensor applicator having a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; an applicator coil antenna oriented around a first axis; and a biosensor device including a biosensor coil antenna; a first wireless transceiver electrically coupled to the biosensor coil antenna; a Bluetooth antenna; and a second wireless transceiver coupled to the Bluetooth antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned at least partially within the cavity; and wherein the applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a remote coil antenna and wirelessly provide at least a first portion of the received EM energy to the biosensor coil antenna.
    Type: Application
    Filed: August 8, 2022
    Publication date: April 27, 2023
    Applicant: Verily Life Sciences LLC
    Inventors: William Biederman, Anil Kumar Ram Rakhyani, Louis Jung, Stephen O'Driscoll
  • Publication number: 20230006337
    Abstract: A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 5, 2023
    Applicant: Verily Life Sciences LLC
    Inventors: Stephen O'Driscoll, Anil Kumar Ram Rakhyani, Louis Jung
  • Patent number: 11426101
    Abstract: One example system includes a biosensor applicator having a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; an applicator coil antenna oriented around a first axis; and a biosensor device including a biosensor coil antenna; a first wireless transceiver electrically coupled to the biosensor coil antenna; a Bluetooth antenna; and a second wireless transceiver coupled to the Bluetooth antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned at least partially within the cavity; and wherein the applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a remote coil antenna and wirelessly provide at least a first portion of the received EM energy to the biosensor coil antenna.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: August 30, 2022
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: William Biederman, Anil Kumar Ram Rakhyani, Louis Jung, Stephen O'Driscoll
  • Patent number: 11404766
    Abstract: A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: August 2, 2022
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Stephen O'Driscoll, Anil Kumar Ram Rakhyani, Louis Jung
  • Publication number: 20220095454
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Sean Frick, Louis Jung, David Lari
  • Patent number: 11229749
    Abstract: A dosage measurement system is adapted to receive a motion from a dosage injection mechanism disposed within a drug injection pen. The dosage measurement system includes a substrate, a sensing capacitor disposed on the substrate, and a lifting tab. The sensing capacitor includes a dielectric layer disposed between a base plate and an adjustable plate. The lifting tab is attached to the adjustable plate and positioned to engage an undulation pattern disposed on a component attached to the dosage injection mechanism. The lifting tab is adapted to physically change a separation distance between the adjustable plate and the base plate in a reciprocal manner in response to the motion of the dosage injection mechanism and engagement with the undulation pattern. A capacitance of the sensing capacitor changes in response to the engagement of the lifting tab with the undulation pattern and the motion of the dosage injection mechanism.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: January 25, 2022
    Assignee: Verily Life Sciences LLC
    Inventors: William Biederman, Louis Jung, Sean Frick, Benjamin Collins, Eric Bennett
  • Patent number: 11224125
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: January 11, 2022
    Assignee: DexCom, Inc.
    Inventors: Sean Frick, Louis Jung, David Lari
  • Patent number: 11038555
    Abstract: One example system for enabling NFC communications with a wearable biosensor includes a biosensor applicator including a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; a first applicator coil antenna physically coupled to the housing and defined within a first plane; and a second applicator coil antenna physically coupled to the housing and defined within a second plane substantially parallel to and different from the first plane, the second applicator coil antenna positioned coaxially with respect to the first applicator coil antenna, wherein the first applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a transmitter coil antenna of a remote device and provide at least a first portion of the received EM energy to the second coil antenna; and a biosensor device including a biosensor coil antenna defined within a third plane substantially parallel to and different than the fir
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: June 15, 2021
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: William Biederman, Anil Kumar Ram Rakhyani, Louis Jung, Stephen O'Driscoll
  • Publication number: 20210135344
    Abstract: A wearable electronic device is described. The wearable electronic device includes two communications antennae. A first antenna of the two is a current-carrying antenna electrically and physically connected to a printed circuit board of the wearable electronic device and housed in a first portion of a housing that is configured for mounting on a person's skin. A second antenna of the two is a scatterer antenna physically connected to an interior surface of a second portion of the housing and configured to overlap a portion of the current-carrying antenna. The second portion of the housing faces away from the person's skin when the wearable device is mounted on the person's skin. Current from the current-carrying antenna is induced in the scatterer antenna to enable communications between the wearable electronic device and one or more other electronic devices.
    Type: Application
    Filed: October 21, 2020
    Publication date: May 6, 2021
    Applicant: Verily Life Sciences LLC
    Inventors: Stephen O'Driscoll, Anil Kumar Ram Rakhyani, Louis Jung
  • Publication number: 20200281467
    Abstract: One example system includes a biosensor applicator having a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; an applicator coil antenna oriented around a first axis; and a biosensor device including a biosensor coil antenna; a first wireless transceiver electrically coupled to the biosensor coil antenna; a Bluetooth antenna; and a second wireless transceiver coupled to the Bluetooth antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned at least partially within the cavity; and wherein the applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a remote coil antenna and wirelessly provide at least a first portion of the received EM energy to the biosensor coil antenna.
    Type: Application
    Filed: April 8, 2020
    Publication date: September 10, 2020
    Applicant: Verily Life Sciences LLC
    Inventors: William Biederman, Anil Kumar Ram Rakhyani, Louis Jung, Stephen O'Driscoll
  • Patent number: 10736549
    Abstract: An example continuous glucose monitor includes a printed circuit board (“PCB”) having first and second outer layers and an inner layer; a semiconductor package having a plurality of pins coupled to the first outer layer of the PCB; an electrical contact formed on the second outer layer of the PCB; a trace having a first portion disposed on the first outer layer, a second portion disposed on the inner layer, and a third portion disposed on the second outer layer, the trace having a first end coupled to a first pin of the plurality of pins and a second end coupled to the electrical contact; and an encapsulant disposed around a perimeter of the semiconductor package, the encapsulant covering the plurality of pins, the first portion of the sensor trace, the third portion of the sensor trace, wherein an upper surface of the semiconductor package remains exposed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 11, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Mandy Philippine, Scott Matula, Johan Vanderhaegen, Louis Jung, Nivi Arumugam
  • Publication number: 20200245459
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Inventors: Sean Frick, Louis Jung, David Lari
  • Patent number: 10660201
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 19, 2020
    Assignee: DexCom, Inc.
    Inventors: Sean Frick, Louis Jung, David Lari
  • Publication number: 20200078527
    Abstract: A dosage measurement system is adapted to receive a motion from a dosage injection mechanism disposed within a drug injection pen. The dosage measurement system includes a substrate, a sensing capacitor disposed on the substrate, and a lifting tab. The sensing capacitor includes a dielectric layer disposed between a base plate and an adjustable plate. The lifting tab is attached to the adjustable plate and positioned to engage an undulation pattern disposed on a component attached to the dosage injection mechanism. The lifting tab is adapted to physically change a separation distance between the adjustable plate and the base plate in a reciprocal manner in response to the motion of the dosage injection mechanism and engagement with the undulation pattern. A capacitance of the sensing capacitor changes in response to the engagement of the lifting tab with the undulation pattern and the motion of the dosage injection mechanism.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 12, 2020
    Inventors: William Biederman, Louis Jung, Sean Frick, Benjamin Collins, Eric Bennett
  • Publication number: 20200044695
    Abstract: One example system for enabling NFC communications with a wearable biosensor includes a biosensor applicator including a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; a first applicator coil antenna physically coupled to the housing and defined within a first plane; and a second applicator coil antenna physically coupled to the housing and defined within a second plane substantially parallel to and different from the first plane, the second applicator coil antenna positioned coaxially with respect to the first applicator coil antenna, wherein the first applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a transmitter coil antenna of a remote device and provide at least a first portion of the received EM energy to the second coil antenna; and a biosensor device including a biosensor coil antenna defined within a third plane substantially parallel to and different than the fir
    Type: Application
    Filed: August 1, 2019
    Publication date: February 6, 2020
    Applicant: Verily Life Sciences LLC
    Inventors: William Biederman, Anil Kumar Ram Rakhyani, Louis Jung, Stephen O'Driscoll
  • Publication number: 20190261511
    Abstract: An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation b
    Type: Application
    Filed: February 22, 2019
    Publication date: August 22, 2019
    Applicant: Verily Life Sciences LLC
    Inventors: Sean Frick, Louis Jung, David Lari
  • Patent number: 10182750
    Abstract: An example continuous glucose monitor includes a printed circuit board (“PCB”) having first and second outer layers and an inner layer, the inner layer disposed between the first and second outer layers; a semiconductor package having four corner portions and a plurality of pins, the semiconductor package coupled to the first outer layer of the PCB via the plurality of pins; an electrical ground plane formed on the PCB and coupled to at least one pin at each of a first, second, and third of the four corner portions, and not coupled to any pins at a fourth corner portion; an electrical contact for a sensor wire formed on the second outer layer of the PCB; a sensor trace having a first portion disposed on the first outer layer, a second portion disposed on the inner layer, and a third portion disposed on the second outer layer, the sensor trace having a first end coupled to a first pin of the plurality of pins and a second end coupled to the electrical contact for the sensor wire, the first pin at the fourth co
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: January 22, 2019
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Mandy Philippine, Scott Matula, Johan Vanderhaegen, Louis Jung, Nivi Arumugam