Patents by Inventor Luchuan Liang

Luchuan Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8548219
    Abstract: Photometric and morphometric features derived from multi-mode imagery of cells in flow are used as a cell analyzer to determine if a marker corresponding to a cancer cell or precancerous cell is present in the population of cells imaged. An imaging system simultaneously acquires a plurality of images for each cell passing through the field of view of the imaging system. Acquiring a plurality of different images (i.e., bright field, dark field, and fluorescent images) facilitates the determination of different morphological and morphometric parameters. Simultaneously acquiring the plurality of images enables relatively large populations of cells to be rapidly imaged, so that relatively small numbers of cancer cells in a large population of cells can be detected. Initially, known cancer cells are imaged to enable a marker to be identified. Then, a sample that may include cancer cells is imaged to determine if the marker is present.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: October 1, 2013
    Assignee: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Luchuan Liang, Vidya Venkatachalam, Philip Morrissey
  • Publication number: 20120148142
    Abstract: Photometric and morphometric features derived from multi-mode imagery of cells in flow are used as a cell analyzer to determine if a marker corresponding to a cancer cell or precancerous cell is present in the population of cells imaged. An imaging system simultaneously acquires a plurality of images for each cell passing through the field of view of the imaging system. Acquiring a plurality of different images (i.e., bright field, dark field, and fluorescent images) facilitates the determination of different morphological and morphometric parameters. Simultaneously acquiring the plurality of images enables relatively large populations of cells to be rapidly imaged, so that relatively small numbers of cancer cells in a large population of cells can be detected. Initially, known cancer cells are imaged to enable a marker to be identified. Then, a sample that may include cancer cells is imaged to determine if the marker is present.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 14, 2012
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Luchuan Liang, Vidya Venkatachalam, Philip Morrissey
  • Patent number: 8131053
    Abstract: Photometric and morphometric features derived from multi-mode imagery of cells in flow are used as a cell analyzer to determine if a marker corresponding to a cancer cell or precancerous cell is present in the population of cells imaged. An imaging system simultaneously acquires a plurality of images for each cell passing through the field of view of the imaging system. Acquiring a plurality of different images (i.e., bright field, dark field, and fluorescent images) facilitates the determination of different morphological and morphometric parameters. Simultaneously acquiring the plurality of images enables relatively large populations of cells to be rapidly imaged, so that relatively small numbers of cancer cells in a large population of cells can be detected. Initially, known cancer cells are imaged to enable a marker to be identified. Then, a sample that may include cancer cells is imaged to determine if the marker is present.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: March 6, 2012
    Assignee: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Luchuan Liang, Vidya Venkatachalam, Philip Morrissey
  • Patent number: 8009189
    Abstract: A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 30, 2011
    Assignee: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Keith Frost, Luchuan Liang, Richard Bauer, Brian Hall, David Perry
  • Patent number: 8005314
    Abstract: A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: August 23, 2011
    Assignee: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Keith Frost, Luchuan Liang, Richard Bauer, Brian Hall, David Perry
  • Publication number: 20100240062
    Abstract: The present invention provides methods for preparing cells with highly condensed chromosomes, such as sperm, and methods for detecting and quantifying specific cellular target molecules in intact cells. Specifically, methods are provided for detecting chromosomes and chromosomal abnormalities, including aneuploidy, in intact cells using fluorescence in situ hybridization of cells in suspension, such as sperm cells.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 23, 2010
    Applicant: Amnis Corporation
    Inventors: James Brawley, Philip J. Morrissey, Rosalynde J. Finch, David A. Basiji, Luchuan Liang
  • Publication number: 20080317325
    Abstract: Photometric and morphometric features derived from multi-mode imaged. An imaging system simultaneously acquires a plurality of images for each cell passing through the field of view of the imaging system. Acquiring a plurality of different images (i.e., bright field, dark field, and fluorescent images) facilitates the determination of different morphological and morphometric parameters. Simultaneously acquiring the plurality of images enables relatively large populations of cells to be rapidly imaged, so that relatively small numbers of cancer cells in a large population of cells can be detected. Initially, known cancer cells are imaged to enable a marker to be identified. Then, a sample that may include cancer cells is imaged to determine if the marker is present.
    Type: Application
    Filed: July 28, 2008
    Publication date: December 25, 2008
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Luchuan Liang, Vidya Venkatachalam, Philip Morrissey
  • Publication number: 20080234984
    Abstract: A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
    Type: Application
    Filed: June 3, 2008
    Publication date: September 25, 2008
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Keith Frost, Luchuan Liang, Richard Bauer, Brian Hall, David Perry
  • Publication number: 20080138816
    Abstract: The present invention provides methods for preparing cells with highly condensed chromosomes, such as sperm, and methods for detecting and quantifying specific cellular target molecules in intact cells. Specifically, methods are provided for detecting chromosomes and chromosomal abnormalities, including aneuploidy, in intact cells using fluorescence in situ hybridization of cells in suspension, such as sperm cells.
    Type: Application
    Filed: August 13, 2007
    Publication date: June 12, 2008
    Applicant: AMNIS CORPORATION
    Inventors: James Brawley, Philip J. Morrissey, Rosalynde J. Finch, David A. Basiji, Luchuan Liang
  • Publication number: 20070146873
    Abstract: A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
    Type: Application
    Filed: December 11, 2006
    Publication date: June 28, 2007
    Applicant: Amnis Corporation
    Inventors: William Ortyn, David Basiji, Keith Frost, Luchuan Liang, Richard Bauer, Brian Hall, David Perry
  • Publication number: 20060257884
    Abstract: The present invention provides methods for preparing cells with highly condensed chromosomes, such as sperm, and methods for detecting and quantifying specific cellular target molecules in intact cells. Specifically, methods are provided for detecting chromosomes and chromosomal abnormalities, including aneuploidy, in intact cells using fluorescence in situ hybridization of cells in suspension, such as sperm cells.
    Type: Application
    Filed: May 20, 2005
    Publication date: November 16, 2006
    Applicant: AMNIS CORPORATION
    Inventors: James Brawley, Philip Morrissey, Rosalynde Finch, David Basiji, Luchuan Liang