Patents by Inventor LUDONG SUN

LUDONG SUN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11305777
    Abstract: An apparatus is provided which includes a processing circuit and a plurality of sensors connected to a vehicle, where at least one of the plurality of sensors is positioned on an undercarriage of the vehicle. The plurality of sensors can detect variations in a road on which the vehicle is traveling. The plurality of sensors can also generate information corresponding to the variations of the road. The plurality of sensors can also transmit the information corresponding to the variations in the road to the processing circuit. The information collected by the plurality of sensors may then be used to augment a driving capability of the vehicle.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: April 19, 2022
    Assignee: Motional AD LLC
    Inventors: Zachary Thomas Batts, Ludong Sun, Ky Woodard, Qian Wang, Yiming Zhao, Stephanie Lee, Lin Zhao
  • Publication number: 20210247772
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Patent number: 11029688
    Abstract: A rumble-strip following system for automated vehicle steering includes a vibration-detector, a steering-device, and a controller-circuit. The vibration-detector is configured to detect vibration experienced by a host-vehicle traveling a roadway. The steering-device is configured to steer the host-vehicle. The controller-circuit is in communication with the vibration-detector and the steering-device. The controller-circuit is configured to determine that the vibration is indicative of a tire of the host-vehicle contacting a rumble-strip arranged parallel to a heading of the roadway, and operate the steering-device so the tire follows the rumble-strip.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: June 8, 2021
    Assignee: Motional AD LLC
    Inventors: Zachary T. Batts, Ludong Sun, Junqing Wei
  • Patent number: 10990102
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 27, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Patent number: 10909851
    Abstract: An intent communication system includes one or more sensors, a controller-circuit, and a broadcast device. The sensors may include one or more of a Light Detection and Ranging (LiDAR), a radar, and a computer vision system. The controller-circuit is disposed in a host vehicle. The controller-circuit is configured to determine, based one or more signals from the one or more sensors, an impending vehicle maneuver. The broadcast device is located in the host vehicle, and is configured to broadcast a broadcast signal containing information directed to the impending vehicle maneuver to at least one vehicle determined to be in a vicinity of the impending vehicle maneuver.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: February 2, 2021
    Assignee: Motional AD LLC
    Inventors: Zachary T. Batts, Ludong Sun
  • Publication number: 20200339151
    Abstract: Among other things, we describe techniques for implementing a vehicle response to sensor failure. In general, one innovative aspect of the subject matter described in this specification can be embodied in methods that include receiving information from a plurality of sensors coupled to a vehicle, determining that a level of confidence of the received information from at least one sensor of a first subset of sensors of the plurality of sensors is less than a first threshold, comparing a number of sensors in the first subset of sensors to a second threshold, and adjusting the driving capability of the vehicle to rely on information received from a second subset of sensors of the plurality of sensors, wherein the second subset of sensors excludes the at least one sensor of the first subset of sensors.
    Type: Application
    Filed: April 29, 2020
    Publication date: October 29, 2020
    Inventors: Zachary Thomas Batts, Ludong Sun, Ky Woodard, Qian Wang, Yiming Zhao, Stephanie Lee, Lin Zhao
  • Publication number: 20200238999
    Abstract: An apparatus is provided which includes a processing circuit and a plurality of sensors connected to a vehicle, where at least one of the plurality of sensors is positioned on an undercarriage of the vehicle. The plurality of sensors can detect variations in a road on which the vehicle is traveling. The plurality of sensors can also generate information corresponding to the variations of the road. The plurality of sensors can also transmit the information corresponding to the variations in the road to the processing circuit. The information collected by the plurality of sensors may then be used to augment a driving capability of the vehicle.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 30, 2020
    Inventors: Zachary Thomas Batts, Ludong Sun, Ky Woodard, Qian Wang, Yiming Zhao, Stephanie Lee, Lin Zhao
  • Publication number: 20200103896
    Abstract: A system includes one or more sensor systems, a controller-circuit, a first module, and a second module. The sensor systems are configured to determine position relationship data between a roadway and a host vehicle. The sensor system includes at least one of a computer-vision system, a radar system, and a LIDAR system. The controller-circuit is configured to receive and transform the position relationship data to effect steering control of the host vehicle. The first module is controlled by the controller-circuit to effect the steering control when the steering control transitions from a manual-mode to an automated mode. The second module is controlled by the controller-circuit to effect steering control of the host vehicle after control by the first module and upon meeting a prescribed condition.
    Type: Application
    Filed: October 3, 2018
    Publication date: April 2, 2020
    Inventors: Zachary T. Batts, Ludong Sun
  • Patent number: 10586407
    Abstract: A tire-wear detection system for an automated vehicle includes a steering-angle-sensor, a vehicle-path-detector, and a controller. The steering-angle-sensor indicates a steering-angle of a host-vehicle. The vehicle-path-detector indicates a turning-radius of the host-vehicle. The controller is in communication with the steering-angle-sensor and the vehicle-path-detector. The controller determines a wear-status of a tire of the host-vehicle based on the turning-radius and the steering-angle.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: March 10, 2020
    Assignee: Aptiv Technologies Limited
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Publication number: 20190378411
    Abstract: An intent communication system includes one or more sensors, a controller-circuit, and a broadcast device. The sensors may include one or more of a Light Detection and Ranging (LiDAR), a radar, and a computer vision system. The controller-circuit is disposed in a host vehicle. The controller-circuit is configured to determine, based one or more signals from the one or more sensors, an impending vehicle maneuver. The broadcast device is located in the host vehicle, and is configured to broadcast a broadcast signal containing information directed to the impending vehicle maneuver to at least one vehicle determined to be in a vicinity of the impending vehicle maneuver.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 12, 2019
    Inventors: Zachary T. Batts, Ludong Sun
  • Patent number: 10384660
    Abstract: A brake control system for operating brakes of an automated vehicle at slow speed includes a motion-detector and a controller. The motion-detector detects relative-movement of a host-vehicle relative to a stationary-feature located apart from the host-vehicle. The controller is configured to operate brakes of the host-vehicle. The controller determines a vehicle-speed of the host-vehicle based on the relative-movement when the vehicle-speed is less than a speed-threshold, and regulates brake-pressure of the brakes based on the vehicle-speed.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 20, 2019
    Assignee: Aptiv Technologies Limited
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Publication number: 20190250618
    Abstract: A rumble-strip following system for automated vehicle steering includes a vibration-detector, a steering-device, and a controller-circuit. The vibration-detector is configured to detect vibration experienced by a host-vehicle traveling a roadway. The steering-device is configured to steer the host-vehicle. The controller-circuit is in communication with the vibration-detector and the steering-device. The controller-circuit is configured to determine that the vibration is indicative of a tire of the host-vehicle contacting a rumble-strip arranged parallel to a heading of the roadway, and operate the steering-device so the tire follows the rumble-strip.
    Type: Application
    Filed: March 13, 2018
    Publication date: August 15, 2019
    Inventors: Zachary T. Batts, Ludong Sun, Junqing Wei
  • Publication number: 20180364721
    Abstract: An operating system for an automated vehicle includes a failure-detector and a controller. The failure-detector detects a component-failure on a host-vehicle. Examples of the component-failure include a flat-tire and engine trouble that reduces engine-power. The controller operates the host-vehicle based on a dynamic-model. The dynamic-model is varied based on the component-failure detected by the failure-detector.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider, Junsung Kim
  • Publication number: 20180354480
    Abstract: A brake control system for operating brakes of an automated vehicle at slow speed includes a motion-detector and a controller. The motion-detector detects relative-movement of a host-vehicle relative to a stationary-feature located apart from the host-vehicle. The controller is configured to operate brakes of the host-vehicle. The controller determines a vehicle-speed of the host-vehicle based on the relative-movement when the vehicle-speed is less than a speed-threshold, and regulates brake-pressure of the brakes based on the vehicle-speed.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 13, 2018
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Publication number: 20180290638
    Abstract: An open-loop brake control system for an automated vehicle includes a brake-unit and a controller. The brake-unit varies brake-pressure to operate brakes of a host-vehicle. The controller is in communication with the brake-unit. The controller operates the brake-unit to an initial-pressure to initiate braking of the host-vehicle in accordance with a brake-model that characterizes vehicle-deceleration versus the initial-pressure based on a time-of-operation of the brakes.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 11, 2018
    Inventors: Gaurav Bhatia, Junqing Wei, Ludong Sun, Guchan Ozbilgin
  • Publication number: 20180293815
    Abstract: A tire-wear detection system for an automated vehicle includes a steering-angle-sensor, a vehicle-path-detector, and a controller. The steering-angle-sensor indicates a steering-angle of a host-vehicle. The vehicle-path-detector indicates a turning-radius of the host-vehicle. The controller is in communication with the steering-angle-sensor and the vehicle-path-detector. The controller determines a wear-status of a tire of the host-vehicle based on the turning-radius and the steering-angle.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 11, 2018
    Inventors: Junqing Wei, Ludong Sun, Zachary Thomas Batts, Jarrod M. Snider
  • Patent number: 9944318
    Abstract: A rear-wheel steering system suitable for use on an automated vehicle includes an object-detector, and actuator, and a controller. The object-detector is used to detect an object proximate to a host-vehicle. The actuator is used to adjust a rear-steering-angle of rear-wheels of the host-vehicle. The controller is in communication with the object-detector and the actuator. The controller is configured to determine a location of the object relative to the host-vehicle based on information from the object-detector, and operate the actuator to avoid the object when the host-vehicle moves.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: April 17, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Brian R. Hilnbrand, Ludong Sun
  • Publication number: 20180072344
    Abstract: A rear-wheel steering system suitable for use on an automated vehicle includes an object-detector, and actuator, and a controller. The object-detector is used to detect an object proximate to a host-vehicle. The actuator is used to adjust a rear-steering-angle of rear-wheels of the host-vehicle. The controller is in communication with the object-detector and the actuator. The controller is configured to determine a location of the object relative to the host-vehicle based on information from the object-detector, and operate the actuator to avoid the object when the host-vehicle moves.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventors: Brian R. Hilnbrand, Ludong Sun
  • Patent number: 9914475
    Abstract: A humanized steering system for an automated vehicle includes one or more steering-wheels operable to steer a vehicle, an angle-sensor configured to determine a steering-angle of the steering-wheels, a hand-wheel used by an operator of the vehicle to influence the steering-angle and thereby manually steer the vehicle, a steering-actuator operable to influence the steering-angle thereby steer the vehicle when the operator does not manually steer the vehicle, a position-sensor operable to indicate a relative-position an object proximate to the vehicle, and a controller. The controller is configured to receive the steering-angle and the relative-position, determine, using deep-learning techniques, a steering-model based on the steering-angle and the relative-position, and operate the steering-actuator when the operator does not manually steer the vehicle to steer the vehicle in accordance with the steering-model, whereby the vehicle is steered in a manner similar to how the operator manually steers the vehicle.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: March 13, 2018
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Ludong Sun, Michael H. Laur, Jonathan L. Wieskamp, Miao Yan
  • Patent number: 9727056
    Abstract: A system for changing a control-mode of an automated vehicle from automated-control to manual-control includes an operator-detection device and a controller. The operator-detection device is operable to detect a readiness-state of an operator of a vehicle while a control-mode of the vehicle is automated-control. The controller is configured to forecast a future-time when the control-mode of the vehicle should change from automated-control to manual-control and determine a take-over-interval for an operator to assume manual-control of the vehicle once notified. The take-over-interval is determined based on the readiness-state. The controller is also configured to notify the operator that the control-mode of the vehicle should change from automated-control to manual-control no later than the take-over-interval prior to the future-time.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 8, 2017
    Assignee: Delphi Technologies, Inc.
    Inventors: Michael H. Laur, Ludong Sun, Indu Vijayan, Serge Lambermont, Ryan S. Middleton