Patents by Inventor Lukasz Mieczyslaw Kaiser
Lukasz Mieczyslaw Kaiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250118064Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel-color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: ApplicationFiled: October 11, 2024Publication date: April 10, 2025Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Patent number: 12271817Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: GrantFiled: January 4, 2024Date of Patent: April 8, 2025Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben David Goodrich, Peter J. Liu, Ryan Sepassi
-
Patent number: 12217173Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: GrantFiled: September 3, 2021Date of Patent: February 4, 2025Assignee: Google LLCInventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Patent number: 12165032Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing an area attention layer in a neural network system. The area attention layer area implements a way for a neural network model to attend to areas in the memory, where each area contains a group of items that are structurally adjacent.Type: GrantFiled: September 27, 2019Date of Patent: December 10, 2024Assignee: Google LLCInventors: Yang Li, Lukasz Mieczyslaw Kaiser, Samuel Bengio, Si Si
-
Patent number: 12142034Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel-color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel-color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel-color channel pair at the particular generation order position using the probability distribution.Type: GrantFiled: November 8, 2023Date of Patent: November 12, 2024Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20240256859Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: ApplicationFiled: January 4, 2024Publication date: August 1, 2024Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben David Goodrich, Peter J. Liu, Ryan Sepassi
-
Publication number: 20240220796Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: ApplicationFiled: January 4, 2024Publication date: July 4, 2024Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben David Goodrich, Peter J. Liu, Ryan Sepassi
-
Publication number: 20240211751Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: ApplicationFiled: January 4, 2024Publication date: June 27, 2024Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben David Goodrich, Peter J. Liu, Ryan Sepassi
-
Publication number: 20240211752Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: ApplicationFiled: January 4, 2024Publication date: June 27, 2024Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben David Goodrich, Peter J. Liu, Ryan Sepassi
-
Publication number: 20240193926Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel-color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel-color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel-color channel pair at the particular generation order position using the probability distribution.Type: ApplicationFiled: November 8, 2023Publication date: June 13, 2024Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20240144006Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: January 8, 2024Publication date: May 2, 2024Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20240143691Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing a sequence-to-sequence model that is recurrent in depth while employing self-attention to combine information from different parts of sequences.Type: ApplicationFiled: December 18, 2023Publication date: May 2, 2024Inventors: Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob D. Uszkoreit, Lukasz Mieczyslaw Kaiser
-
Patent number: 11893483Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: GrantFiled: August 7, 2020Date of Patent: February 6, 2024Assignee: Google LLCInventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Patent number: 11886998Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: GrantFiled: January 13, 2023Date of Patent: January 30, 2024Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben Goodrich, Peter J. Liu, Ryan Sepassi
-
Patent number: 11860969Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing a sequence to sequence model that is recurrent in depth while employing self-attention to combine information from different parts of sequences.Type: GrantFiled: August 10, 2020Date of Patent: January 2, 2024Assignee: Google LLCInventors: Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob D. Uszkoreit, Lukasz Mieczyslaw Kaiser
-
Patent number: 11816884Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel—color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: GrantFiled: July 18, 2022Date of Patent: November 14, 2023Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Patent number: 11803711Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for performing machine translation tasks. One method includes receiving an input text segment in an input language; processing the input text segment using an encoder neural network to generate an encoder neural network output, the encoder neural network comprising multiple depth wise separable convolutional neural network layers; processing the encoder neural network output using an autoregressive decoder neural network to generate a decoder neural network output; and processing the decoder neural network output to generate a predicted output text segment in a target natural language.Type: GrantFiled: November 20, 2020Date of Patent: October 31, 2023Assignee: Google LLCInventors: Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Francois Chollet
-
Publication number: 20230153613Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: ApplicationFiled: January 13, 2023Publication date: May 18, 2023Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben Goodrich, Peter J. Liu, Ryan Sepassi
-
Publication number: 20230076971Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel—color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: ApplicationFiled: July 18, 2022Publication date: March 9, 2023Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Patent number: 11556786Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes, at each of a plurality of generation time steps: generating a combined sequence for the generation time step that includes the input sequence followed by the output tokens that have already been generated as of the generation time step; processing the combined sequence using a self-attention decoder neural network to generate a time step output that defines a score distribution over a set of possible output tokens; and selecting, using the time step output, an output token from the set of possible output tokens as the next output token in the output sequence.Type: GrantFiled: October 29, 2018Date of Patent: January 17, 2023Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Etienne Pot, Mohammad Saleh, Ben David Goodrich, Peter J. Liu, Ryan Sepassi