Patents by Inventor Lyle Dean Canfield

Lyle Dean Canfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7555328
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensor may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 30, 2009
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 7079881
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: July 18, 2006
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Publication number: 20030078484
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Application
    Filed: November 4, 2002
    Publication date: April 24, 2003
    Applicant: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 6512939
    Abstract: Improved implantable monitoring systems suitable for long-term in vivo use to measure the concentration of one or more prescribed substances, such as glucose, are described herein. In particular, an implantable enzyme-based glucose monitoring system is described that includes at least one of the following: means for replenishing the enzyme solution as it is consumed by the enzymatic reaction; means for replenishing the electrolyte solution bathing the electrode assembly; and microprocessing means proximal the electrode assembly. In preferred embodiments, a microprocessor assembly is hermetically associated with the substrate to which the electrode assembly is affixed. Further, the monitoring systems employ one or more reservoir systems in fluid communication with enzyme and electrolyte chambers wherein the enzyme and electrolyte solutions are used.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: January 28, 2003
    Assignee: Medtronic Minimed, Inc.
    Inventors: Michael S. Colvin, Joseph H. Schulman, Lyle Dean Canfield, Rajiv Shah
  • Patent number: 6498043
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: December 24, 2002
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 6259937
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: July 10, 2001
    Assignee: Alfred E. Mann Foundation
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 6081736
    Abstract: Improved implantable monitoring systems suitable for long-term in vivo use to measure the concentration of one or more prescribed substances, such as glucose are described herein. In particular, an implantable enzyme-based glucose monitoring system is described that includes at least one of the following: means for replenishing the enzyme solution as it is consumed by the enzymatic reaction; means for replenishing the electrolyte solution bathing the electrode assembly; and microprocessing means proximal the electrode assembly. In preferred embodiments a microprocessor assembly is hermetically associated with the substrate to which the electrode assembly is affixed. Further, the monitoring systems employ one or more reservoir systems in fluid communication with enzyme and electrolyte chambers wherein the enzyme and electrolyte solutions are used.
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: June 27, 2000
    Assignee: Alfred E. Mann Foundation
    Inventors: Michael S. Colvin, Joseph H. Schulman, Lyle Dean Canfield, Rajiv Shah
  • Patent number: 5999849
    Abstract: A low power switched rectifier circuit is realized using P-MOS and N-MOS FET switches that are turned ON/OFF at just the right time by a detector and inverter circuit (which form an integral part of the rectifier circuit) to rectify an incoming ac signal in a highly efficient manner. Parasitic diodes and transistors that form an integral part of the FET circuitry respond to and rectify the incoming signal during start up, i.e., when no supply voltage is yet present, thereby providing sufficient operating voltage for the FET switches to begin to perform their intended rectifying function. In the absence of an incoming ac signal, i.e., during the time between biphasic pulses, the rectifier circuit is biased with an extremely small static bias current; but in the presence of an incoming ac signal, at a time when the positive and negative phases of the incoming signal are to be connected to positive and negative supply lines, a much larger dynamic bias current is automatically triggered.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: December 7, 1999
    Assignee: Alfred E. Mann Foundation
    Inventors: John C. Gord, Lyle Dean Canfield
  • Patent number: 5750926
    Abstract: A thin hermetically sealed electrical feedthrough suitable for implantation within living tissue permits electrical connection between electronic circuits sealed within an hermetically sealed case and electrical terminals or contacts on the outside of the case. The hermetically sealed case is made by hermetically bonding a cover to an insulating layer. The hermetically sealed electrical feedthrough is made by depositing a conductive trace on the insulating layer and then depositing another insulating layer thereover, so that the conductive trace is hermetically encapsulated within the insulating layers. At least two spaced-apart openings are formed in the insulating layers before bonding the cover thereto, exposing the conductive trace. Additional conductive material is then inserted within each of the openings or holes so as to form conductive vias that make electrical contact with the conductive trace.
    Type: Grant
    Filed: August 16, 1995
    Date of Patent: May 12, 1998
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Lyle Dean Canfield