Patents by Inventor Lynda E. Busse

Lynda E. Busse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557872
    Abstract: Fiber optic amplification includes a photonic crystal fiber coupled to a pump laser through a first coupler. The pump laser emits a first electromagnetic radiation wave into the photonic crystal fiber at a first oscillation frequency and a second electromagnetic radiation wave into the photonic crystal fiber at a second oscillation frequency equaling the first oscillation frequency. The first and second electromagnetic radiation waves interact to generate a signal comprising an electromagnetic radiation wave at a third oscillation frequency and an idler comprising a fourth electromagnetic radiation wave at a fourth oscillation frequency to be generated and amplified through parametric amplification. Parametric amplification is achieved by four wave mixing. The photonic crystal fiber emits a parametric output signal based on the four wave mixing. A nonlinear crystal frequency doubles the parametric output signal through second-harmonic generation.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: January 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: L. Brandon Shaw, Rafael R. Gattass, Rajesh Thapa, Lynda E. Busse, Ishwar D. Aggarwal, Daniel L. Rhonehouse, Jasbinder S. Sanghera, Jason Auxier
  • Patent number: 11231525
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a seed layer of material deposited on the surface of the optical element. The seed layer is removed during or after the etching, and serves to control etching time as well as the transmission region of the optical element having ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: January 25, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lynda E. Busse, Jesse A. Frantz, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Menelaos K. Poutous
  • Patent number: 11035984
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a three-dimensional film layer applied to the surface of the optical element. The methods beneficially permit materials that do not exhibit local variation in physical and chemical properties to be provided with ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 15, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Menelaos K. Poutous
  • Publication number: 20210109256
    Abstract: A method for producing nanostructured, hydrophilic, transmissive, anti-reflective surfaces is described. The method for providing a hydrophilic surface includes steps of providing a substrate that is transmissive in at least one wavelength in the infrared to ultraviolet range of the electromagnetic spectrum and comprises at least one surface including nanostructures of a size smaller than the at least one wavelength; and functionalizing the at least one surface with hydroxyl groups thereon. This method provides devices having excellent transmittance and anti-reflectance properties and which are resistant to seawater.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Darryl A. Boyd, Jesse A. Frantz, Shyam S. Bayya, Lynda E. Busse, Jasbinder S. Sanghera, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20210048561
    Abstract: An antireflection optical element formed from an optical material. The optical material includes a first plurality of antireflective surface structures in the form of first protuberances from the optical material. The first plurality of antireflective surface structures are constructed to aid in transmission of a first wavelength range through the optical material. Also included are a second plurality of antireflective surface structures in the form second protuberances from the first plurality of antireflective surface structures. The second plurality of antireflective surface structures are constructed to aid in transmission a second wavelength range through the optical material. The first wavelength range comprises longer wavelengths than the second wavelength range.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Lynda E. Busse, Leslie B. Shaw, Jesse A. Frantz, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 10884188
    Abstract: A method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: January 5, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Publication number: 20200271862
    Abstract: A method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Patent number: 10663667
    Abstract: A system and method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 26, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Publication number: 20200059060
    Abstract: Fiber optic amplification includes a photonic crystal fiber coupled to a pump laser through a first coupler. The pump laser emits a first electromagnetic radiation wave into the photonic crystal fiber at a first oscillation frequency and a second electromagnetic radiation wave into the photonic crystal fiber at a second oscillation frequency equaling the first oscillation frequency. The first and second electromagnetic radiation waves interact to generate a signal comprising an electromagnetic radiation wave at a third oscillation frequency and an idler comprising a fourth electromagnetic radiation wave at a fourth oscillation frequency to be generated and amplified through parametric amplification. Parametric amplification is achieved by four wave mixing. The photonic crystal fiber emits a parametric output signal based on the four wave mixing. A nonlinear crystal frequency doubles the parametric output signal through second-harmonic generation.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Inventors: L. Brandon Shaw, Rafael R. Gattass, Rajesh Thapa, Lynda E. Busse, Ishwar D. Aggarwal, Daniel L. Rhonehouse, Jasbinder S. Sanghera, Jason Auxier
  • Patent number: 10350633
    Abstract: A composite and a coating having engineered reflective properties are described. The composite comprises a matrix and flakes of a multilayer polymer film including one or more bilayers including at least a layer of a first polymer and a layer of a second polymer having a different refractive index than the first polymer. The coating described includes the composite as applied to a surface and has a reflectance of at least 10% for a selected wavelength range and a transmittance of at least 50% at wavelengths outside of the selected wavelength range. Also described are methods for forming the composite and the coating.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 16, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10254169
    Abstract: The present invention provides an optical detector device, including: a metal absorber layer; and a dielectric cover layer coupled to the metal absorber layer, wherein the dielectric cover layer includes one or more antireflective structured surfaces. The optical detector device further includes one or more of a passive substrate layer and an active thermoelectric element layer coupled to the metal absorber layer opposite the dielectric cover layer. The one or more antireflective structured surfaces each utilize a random pattern.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 9, 2019
    Assignees: The Government of the United States of America, as represented by the Secretary of the Navy, The University of North Carolina at Charlotte
    Inventors: Menelaos K. Poutous, Ishwar D. Aggarwal, Jasbinder S. Sanghera, Lynda E. Busse, Brandon L. Shaw
  • Publication number: 20190094465
    Abstract: A system and method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 28, 2019
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Patent number: 10133000
    Abstract: An optical system having two or more different optical elements with a corresponding interface between the optical elements. At least one of the optical elements has an anti-reflective structure that is transferred to the interface between two optical elements, typically by embossing. Also disclosed is the related method for making the optical system.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 20, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Catalin M Florea, Leslie Brandon Shaw, Lynda E Busse, Ishwar D. Aggarwal, Steven R. Bowman
  • Patent number: 10126504
    Abstract: A system and method for creating an anti-reflective surface structure on an optical device includes a shim including a textured pattern, wherein the shim is configured to stamp the optical device with the textured pattern, a connector configured to place the optical device in proximity to the shim and apply a force to the optical device against the shim, and a laser source configured to heat the optical device by generating and applying a laser beam to the optical device when the optical device is placed in proximity to the shim.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: November 13, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Publication number: 20180238739
    Abstract: The present invention provides an optical detector device, including: a metal absorber layer; and a dielectric cover layer coupled to the metal absorber layer, wherein the dielectric cover layer includes one or more antireflective structured surfaces. The optical detector device further includes one or more of a passive substrate layer and an active thermoelectric element layer coupled to the metal absorber layer opposite the dielectric cover layer. The one or more antireflective structured surfaces each utilize a random pattern.
    Type: Application
    Filed: August 6, 2015
    Publication date: August 23, 2018
    Inventors: Menelaos K. POUTOUS, Ishwar D. AGGARWAL, Jasbinder S. SANGHERA, Lynda E. BUSSE, Brandon L. SHAW
  • Publication number: 20180172882
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a three-dimensional film layer applied to the surface of the optical element. The methods beneficially permit materials that do not exhibit local variation in physical and chemical properties to be provided with ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 21, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. FRANTZ, Lynda E. BUSSE, L. Brandon SHAW, Jasbinder S. SANGHERA, Ishwar D. AGGARWAL, Menelaos K. Poutous
  • Publication number: 20180136370
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a seed layer of material deposited on the surface of the optical element. The seed layer is removed during or after the etching, and serves to control etching time as well as the transmission region of the optical element having ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lynda E. Busse, Jesse A. Frantz, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Menelaos K. Poutous
  • Publication number: 20180136368
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on optical elements. Optical elements having ARSS on at least one surface are also provided.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Kevin J. Major, Menelaos K. Poutous, Karteek Kunala
  • Publication number: 20170307782
    Abstract: The present invention provides a specific gradient-optical-index porous (GRIP) layer coating on inorganic optical substrate surfaces, and the fabrication method used to create the GRIP layer coating. The method consists of two major processing steps: (1) the co-deposition of an optical index-matching material and a mass density-modulating material, followed by (2) the sacrificial etch of the mass-density-modulating material to reveal a GRIP surface. The method is designed for use with crystalline, polycrystalline, and dry or wet etch-resistant substrate materials, where anti-reflective (AR) solutions using AR surface structures (ARSSs) do not exist. These coatings are designed to minimize Fresnel reflectivity of the original substrate surfaces, using a single porous layer matched to the optical index of the original substrate material.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 26, 2017
    Inventors: Menelaos K. POUTOUS, Ishwar D. AGGARWAL, Abigail H. PELTIER, Lynda E. BUSSE, Jesse FRANTZ, L. Brandon SHAW, Jas S. SANGHERA
  • Publication number: 20170227715
    Abstract: A system and method for creating an anti-reflective surface structure on an optical device includes a shim including a textured pattern, wherein the ship is configured to stamp the optical device with the textured pattern, a connector configured to place the optical device in proximity to the shim and apply a force to the optical device against the shim, and a laser source configured to heat the optical device by generating and applying a laser beam to the optical device when the optical device is placed in proximity to the shim.
    Type: Application
    Filed: May 27, 2016
    Publication date: August 10, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea