Patents by Inventor Lynden Erickson

Lynden Erickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7376305
    Abstract: An Echelle grating has alternate first (1a) and second (1b) sets of facets (1). The first set of facets (1a) is operative to reflect incident light (4) for diffraction and the second set of facets (1b) extends between adjacent facets of the first set (1a). Only the first set of facets (1a) is metallized to enhance reflection. The second set of facets (1b) is left unmetallized. This configuration reduces polarization dependent loss (PDL).
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 20, 2008
    Assignee: Enablence Inc.
    Inventors: Andre Delage, Boris Lamontagne, Kokou Dossou, Siegfried Janz, Pavel Cheben, Lynden Erickson, Dan-Xia Xu, Sylvain Charbonneau
  • Patent number: 7272276
    Abstract: An optical performance monitor for measuring the performance of optical networks has an echelle grating for demultiplexing an input beam into a plurality of wavelengths that are focused onto an array of divided output waveguides. Each divided output waveguide is positioned to receive a corresponding demultiplexed wavelength from the echelle grating or other waveguide multiplexer device. The divided output waveguides laterally separate the corresponding demultiplexed wavelength into a first and second portions. A detector array is positioned to receive the respective portions of the demultiplexed wavelengths and by comparing their relative intensity it is possible to detect any drift in the nominal wavelengths of the channels.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: September 18, 2007
    Assignee: Enablence Inc.
    Inventors: Matt Pearson, Lynden Erickson, John Miller, Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20060209411
    Abstract: An Echelle grating has alternate first (1a) and second (1b) sets of facets (1). The first set of facets (1a) is operative to reflect incident light (4) for diffraction and the second set of facets (1b) extends between adjacent facets of the first set (1a). Only the first set of facets (1a) is metallized to enhance reflection. The second set of facets (1b) is left unmetallized. This configuration reduces polarization dependent loss (PDL).
    Type: Application
    Filed: November 26, 2002
    Publication date: September 21, 2006
    Inventors: Andre Delage, Boris Lamontagne, Kokou Dossou, Siegfried Janz, Pavel Cheben, Lynden Erickson, Dan-Xia Xu, Sylvain Charbonneau
  • Publication number: 20040240063
    Abstract: A method is desribed for controlling the pass band of an optical device wherein a phase mask is introduced to modify the shaped of an image produced by the photonic device.
    Type: Application
    Filed: November 28, 2003
    Publication date: December 2, 2004
    Inventors: Andre Delage, Muthukumaran Packirisamy, Siegfried Janz, Lynden Erickson, Dan-Xia Xu, Pavel Cheben, Boris Lamontage, Sylvain Charbonneau
  • Publication number: 20040151459
    Abstract: The method consists of creating a compensating region within the slab waveguide region, with effective TE and TM mode refractive indices of the compensating region higher than those of the original slab waveguide. Such change in refractive indices is achieved by deposition of an over-layer on the compensating region.
    Type: Application
    Filed: November 28, 2003
    Publication date: August 5, 2004
    Inventors: Pavel Cheben, Siegfried Janz, Dan-Xia Xu, Andre Delage, Lynden Erickson, Boris Lamontage, Sylvain Charbonneau
  • Publication number: 20040151429
    Abstract: Disclosed is an optical double pass equalizer for equalizing a wavelength division multiplexed (WDM) signal. The equalizer comprises a multiplexer/demultiplexer and multiple variable optical attenuators (VOAs) integrated on a single monolithic chip. The WDM signal is demultiplexed into individual wavelength channels by the multiplexer/demultiplexer and each wavelength channel is equalized by a corresponding VOA. The equalized wavelength channels are then multiplexed into an equalized WDM signal by the multiplexer/demultiplexer. This provides several advantages, including a reduction in required assembly and assembly cost, as well as an improved dynamic range in attenuation level or alternatively a reduction in power consumption for a fix attenuation level compared to a single pass VOA unit.
    Type: Application
    Filed: November 28, 2003
    Publication date: August 5, 2004
    Inventors: Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Lynden Erickson, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20030068113
    Abstract: A method is disclosed for polarization birefringence compensation in a photonic device with a slab waveguide having a core. A compensator region is formed in the slab waveguide to minimize the wavelength shift between light of different polarizations. A thin capping layer, typically of silicon nitride, having a higher refractive index than the core, is formed on the compensator region to increase the birefringence contrast between the compensator region and the planar waveguide.
    Type: Application
    Filed: January 25, 2002
    Publication date: April 10, 2003
    Inventors: Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Lynden Erickson, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20030063849
    Abstract: A method is disclosed for polarization birefringence compensation in a photonic device with a slab waveguide having a core. A compensator region is formed in the slab waveguide to minimize the wavelength shift between light of different polarizations. A thin capping layer, typically of silicon nitride, having a higher refractive index than the core is formed on the compensator region to increase the birefringence contrast between the compensator region and the planar waveguide.
    Type: Application
    Filed: November 8, 2001
    Publication date: April 3, 2003
    Inventors: Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Lynden Erickson, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20030048498
    Abstract: An optical performance monitor for measuring the performance of optical networks has an echelle grating for demultiplexing an input beam into a plurality of wavelengths that are focused onto an array of divided output waveguides. Each divided output waveguide is positioned to receive a corresponding demultiplexed wavelength from the echelle grating or other waveguide multiplexer device. The divided output waveguides laterally separate the corresponding demultiplexed wavelength into a first and second portions. A detector array is positioned to receive the respective portions of the demultiplexed wavelengths and by comparing their relative intensity it is possible to detect any drift in the nominal wavelengths of the channels.
    Type: Application
    Filed: November 8, 2001
    Publication date: March 13, 2003
    Inventors: Matt Pearson, Lynden Erickson, John Miller, Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Boris Lamontagne, Sylvain Charbonneau
  • Patent number: 6518603
    Abstract: A porous semiconductor is created by electrochemical etching. Selected regions of a semiconductor are first treated to reduce the threshold potential at which pore formation occurs, and then an electrochemical etch is carried out on the semicnoductor at a potential at least equal to the reduced threshold potential for the selected regions and less than the threshold potential for untreated regions. The selective treatment preferably involves implantation with the same ions as the semiconductor, i.e. Si ions for silicon. The treatment results in the formation of highly defined etch patterns or patterns of porous material depending on the process conditions.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: February 11, 2003
    Assignee: National Research Council of Canada
    Inventors: Patrik Schmuki, Lynden Erickson, David J. Lockwood
  • Patent number: 6284671
    Abstract: A porous semiconductor is created by electrochemical etching. Selected regions of a semiconductor are first treated to reduce the threshold potential at which pore formation occurs, and then an electrochemical etch is carried out on the semiconductor at a potential at least equal to the reduced threshold potential for the selected regions and less than the threshold potential for untreated regions. The selective treatment preferably involves implantation with the same ions as the semiconductor, i.e. Si ions for silicon. The treatment results in the formation of highly defined etch patterns or patterns of porous material depending on the process conditions.
    Type: Grant
    Filed: November 19, 1998
    Date of Patent: September 4, 2001
    Assignee: National Research Council of Canada
    Inventors: Patrik Schmuki, Lynden Erickson, David J. Lockwood