Patents by Inventor M. Shahjahan Kazi

M. Shahjahan Kazi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230372905
    Abstract: The present disclosure relates to oxidation catalyst compositions for use in a close-coupled diesel oxidation catalyst (ccDOC) application, in which the ccDOC can function as a heat generator under high space velocity conditions. The oxidation catalyst compositions include a high surface area support material doped with at least one metal oxide, and a platinum group metal (PGM) supported on the doped high surface area support material.
    Type: Application
    Filed: October 15, 2021
    Publication date: November 23, 2023
    Inventors: M. Shahjahan Kazi, Shiang Sung, Claire Chunjuan Zhang, Xiaolai Zheng, Sandip D. Shah, Andrew Thoms
  • Publication number: 20230001386
    Abstract: An oxidation catalyst composition is provided, the composition including a plurality of platinum group metal particles having a multi-modal distribution of particle sizes. The plurality of platinum group metal particles includes a first population of platinum group metal particles having a range of particle sizes of from about 0.5 nm to about 3 nm, and a second population of platinum group metal particles having a range of particle sizes of from about 4 nm to about 15 nm. Methods for the preparation and use of the catalyst composition are also provided, as well as catalyst articles and emission gas treatment systems employing such catalyst articles. The catalyst exhibits enhanced stability with respect to oxidation performance after degreening and/or aging, as compared to conventional oxidation catalysts, in particular less loss of NOx oxidation performance.
    Type: Application
    Filed: November 26, 2020
    Publication date: January 5, 2023
    Inventors: M Shahjahan KAZI, Andreas R. MUNDING, David M. YOUNGREN
  • Patent number: 11268420
    Abstract: A system for treatment of an exhaust gas stream from an engine is provided, containing an upstream selective catalytic reduction (SCR) catalyst, which receives the exhaust gas stream without any intervening catalyst, a diesel oxidation catalyst (DOC) positioned downstream thereof; a catalyzed soot filter (CSF) downstream of the diesel oxidation catalyst; a second SCR catalyst positioned downstream of the catalyzed soot filter; and an ammonia oxidation (AMOx) catalyst. The application also describes use of such systems to reduce nitrogen oxides (NOx) and hydrocarbons (HC) in an exhaust gas stream.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: March 8, 2022
    Assignee: BASF Corporation
    Inventors: Kenneth E. Voss, Kevin A. Hallstrom, Sandip D. Shah, David M. Youngren, Andrew Thoms, M. Shahjahan Kazi, Robert Dorner
  • Publication number: 20210079826
    Abstract: A system for treatment of an exhaust gas stream from an engine is provided, containing an upstream selective catalytic reduction (SCR) catalyst, which receives the exhaust gas stream without any intervening catalyst, a diesel oxidation catalyst (DOC) positioned downstream thereof; a catalyzed soot filter (CSF) downstream of the diesel oxidation catalyst; a second SCR catalyst positioned downstream of the catalyzed soot filter; and an ammonia oxidation (AMOx) catalyst. The application also describes use of such systems to reduce nitrogen oxides (NOx) and hydrocarbons (HC) in an exhaust gas stream.
    Type: Application
    Filed: February 18, 2019
    Publication date: March 18, 2021
    Inventors: Kenneth E. Voss, Kevin A. Hallstrom, Sandip D. Shah, David M. Youngren, Andrew Thoms, M. Shahjahan Kazi, Robert Dorner
  • Patent number: 9333490
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a zoned diesel oxidation catalyst with a first washcoat zone with a Pt/Pd ratio that is less than 3:1 and a PGM loading at least twice that of a second washcoat zone.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 10, 2016
    Assignee: BASF Corporation
    Inventors: M. Shahjahan Kazi, Fabien A. Rioult, Stanley A. Roth, Kenneth E. Voss
  • Patent number: 9126182
    Abstract: Catalyzed soot filters comprising a wall flow monolith having a washcoat comprising an alkali base metal composite disposed on the monolith. Methods of manufacturing and using catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 8, 2015
    Assignee: BASF Corporation
    Inventors: Michel Deeba, M. Shahjahan Kazi
  • Publication number: 20140271429
    Abstract: An oxidation catalyst composite, methods, and systems for the treatment of exhaust gas emissions from a diesel engine are described. More particularly, an oxidation catalyst composite including a zoned diesel oxidation catalyst with a first washcoat zone with a Pt/Pd ratio that is less than 3:1 and a PGM loading at least twice that of a second washcoat zone.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: BASF Corporation
    Inventors: M. Shahjahan Kazi, Fabien A. Rioult, Stanley A. Roth, Kenneth E. Voss
  • Publication number: 20130195741
    Abstract: Catalyzed soot filters comprising a wall flow monolith having a washcoat comprising an alkali base metal composite disposed on the monolith. Methods of manufacturing and using catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: BASF Corporation
    Inventors: Michel Deeba, M. Shahjahan Kazi
  • Patent number: 8329607
    Abstract: Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 11, 2012
    Assignee: BASF Corporation
    Inventors: M. Shahjahan Kazi, Michel Deeba, Torsten Neubauer, Alfred Helmut Punke, Torsten Wolfgang Mueller-Stach, Gerd Grubert, Stanley A. Roth, Jeffrey Barmont Hoke, Shlang Sung, Yuejin Li, Xinyi Wei, Chung-Zong Wan
  • Publication number: 20100186375
    Abstract: Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 29, 2010
    Applicant: BASF Catalysts LLC
    Inventors: M. Shahjahan Kazi, Michel Deeba, Torsten Neubauer, Alfred Helmut Punke, Torsten Wolfgang Mueller-Stach, Gerd Grubert, Stanley A. Roth, Jeffrey Barmont Hoke, Shiang Sung, Yuejin Li, Xinyi Wei, Chung-Zong Wan