Patents by Inventor Machteld Maria Mertens

Machteld Maria Mertens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8383079
    Abstract: A crystalline molecular sieve comprises at least [AlO4] and [PO4] tetrahedral units and comprising a first framework structure defining a first set of uniformly distributed pores having an average cross-sectional dimension of from about 0.3 to less than 2 nanometers and further comprising a second framework structure defining a second set of uniformly distributed pores having an average cross-sectional dimension of from 2 to 50 nanometers. The first framework structure is preferably of the CHA framework type.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: February 26, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastien P. B. Kremer, Machteld Maria Mertens, Luc R.M. Martens
  • Patent number: 7947621
    Abstract: This invention provides a process for manufacturing a catalyst with a desired attrition index, comprising the steps of selecting at least one molecular sieve having a morphology and size index (MSI) of from 1 to about 1000 to secure said desired attrition index of said catalyst.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 24, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Machteld Maria Mertens, Stephen N. Vaughn
  • Patent number: 7901664
    Abstract: In a method of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve, a synthesis mixture is provided comprising water, a source of aluminum, a source of phosphorus, optionally a source of a metal other than aluminum, a tertiary amine, and an alkylating agent capable of reacting with said tertiary amine to form a quaternary ammonium compound capable of directing the synthesis of said molecular sieve. The synthesis mixture is maintained under conditions sufficient to cause the alkylating agent to react with the tertiary amine to produce the quaternary ammonium compound and to induce crystallization of the molecular sieve.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 8, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Mobae Afeworki, Matu J. Shah, Machteld Maria Mertens
  • Patent number: 7842640
    Abstract: In a method of synthesizing an aluminophosphate or silicoaluminophosphate molecular sieve, a synthesis mixture is prepared by mixing a plurality of starting materials including at least a source of water, a source of phosphorus, a source of aluminum, optionally, a source of silicon and, and at least one organic directing agent for directing the formation of said molecular sieve. The starting materials are maintained at a temperature between 25° C. and 50° C., preferably between 30° C. and 45° C., during the mixing and until preparation of the starting mixture is complete, whereafter the synthesis mixture is heated to a crystallization temperature between about 100° C. and about 350° C. until crystals of the molecular sieve are produced. When crystallization is complete, the molecular sieve is recovered.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: November 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Maria Mertens, Thomas H. Colle
  • Patent number: 7807122
    Abstract: A process for manufacturing a metalloaluminophosphate molecular sieve, the process comprising the steps of: (a) combining at least one silicon source, at least one metal source, at least one structure-directing-agent (R), at least one phosphorus source, and at least one aluminum source to form a mixture having a molar composition according to formula: (n)Si:Al2:(m)P:(x)R:(y)H2O:(z)M wherein n is in the range of from about 0.005 to about 0.6, m is in the range of from about 1.2 to about 2.4, x is in the range of from about 0.5 to about 2, y is in the range of from about 10 to about 60, and z is in the range of from about 0.001 to 1; and (b) submitting the mixture to crystallization conditions to form the metalloaluminophosphate molecular sieve, wherein the metalloaluminophosphate molecular sieve has an X-ray diffraction pattern having a FWHM greater than 0.10 degree (2?) and an AEI/CHA framework type ratio of from about 0/100 to about 40/60 as determined by DIFFaX analysis.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: October 5, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Maria Mertens, Karl G. Strohmaier
  • Patent number: 7785554
    Abstract: A process for manufacturing a silicoaluminophosphate molecular sieve comprising at least one intergrown phase of AEI and CHA framework types, the process comprising the steps of (a) combining at least one silicon source, at least one phosphorus source, at least one aluminum source, and at least one structure-directing-agent (R) to form a mixture; and (b) treating the mixture at crystallization conditions sufficient to form the silicoaluminophosphate molecular sieve, wherein the mixture prepared in step (a) has a molar composition of: (n)SiO2/Al2O3/(m)P2O5/(x)R/(y)H2O wherein n ranges from about 0.005 to about 0.6, m ranges from about 0.6 to about 1.2, x ranges from about 0.5 to about 0.99, and y ranges from about 10 to about 40.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: August 31, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Maria Mertens, An Amandine Verberckmoes
  • Patent number: 7732537
    Abstract: One aspect of the invention relates to a method for formulating a molecular sieve catalyst composition, the method comprising the steps of: (a) providing a synthesized molecular sieve having been recovered in the presence of a flocculant; (b) thermally treating the synthesized molecular sieve at a temperature from about 50° C. to about 250° C. and under other conditions sufficient to form a thermally treated synthesized molecular sieve having a first LOI less than 26% and a first micropore surface area; (c) aging the thermally treated synthesized molecular sieve for at least one year; (d) analyzing the aged, thermally treated molecular sieve to determine a second micropore surface area, wherein the second micropore surface area is 3% or less lower than the first micropore surface area; and (e) combining the aged, thermally treated synthesized molecular sieve, a binder, and optionally a matrix material to produce an aged, formulated molecular sieve catalyst composition.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Luc R. M. Martens, Machteld Maria Mertens, Stephen N. Vaughn
  • Patent number: 7670589
    Abstract: The synthesis of a crystalline material, in particular, a high silica zeolite, comprising a chabazite-type framework molecular sieve is conducted in the presence of an organic directing agent having the formula: [R1R2R3N—R4]+Q? wherein R1 and R2 are independently selected from hydrocarbyl groups and hydroxy-substituted hydrocarbyl groups having from 1 to 3 carbon atoms, provided that R1 and R2 may be joined to form a nitrogen-containing heterocyclic structure, R3 is an alkyl group having 2 to 4 carbon atoms and R4 is selected from a 4- to 8-membered cycloalkyl group, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms; and a 4- to 8-membered heterocyclic group having from 1 to 3 heteroatoms, said heterocyclic group being, optionally, substituted by 1 to 3 alkyl groups each having from 1 to 3 carbon atoms and the or each heteroatom in said heterocyclic group being selected from the group consisting of O, N, and S, or R3 and R4 are hydrocarbyl groups having from 1 to 3 carbon a
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: March 2, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld Maria Mertens, Matu J. Shah, Marc H. Anthonis, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder, Anthony F. Volpe, Jr.
  • Patent number: 7622417
    Abstract: A method is disclosed of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve comprising an AEI structure type material, in which the rate of heating to the crystallization temperature is controlled, either alone or in combination with the H2O:Al2O3 molar ratio of the synthesis mixture, so as to enhance the yield of the desired molecular sieve product.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: November 24, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Machteld Maria Mertens
  • Publication number: 20090247802
    Abstract: In a method of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve, a synthesis mixture is provided comprising water, a source of aluminum, a source of phosphorus, optionally a source of a metal other than aluminum, a tertiary amine, and an alkylating agent capable of reacting with said tertiary amine to form a quaternary ammonium compound capable of directing the synthesis of said molecular sieve. The synthesis mixture is maintained under conditions sufficient to cause the alkylating agent to react with the tertiary amine to produce the quaternary ammonium compound and to induce crystallization of the molecular sieve.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Guang Cao, Mobae Afeworki, Matu J. Shah, Machteld Maria Mertens
  • Publication number: 20090238745
    Abstract: A method is disclosed of synthesizing an aluminophosphate or metalloaluminophosphate molecular sieve comprising an AEI structure type material, in which the rate of heating to the crystallization temperature is controlled, either alone or in combination with the H2O:A12O3 molar ratio of the synthesis mixture, so as to enhance the yield of the desired molecular sieve product.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 24, 2009
    Inventor: Machteld Maria Mertens
  • Publication number: 20090239737
    Abstract: In a method of synthesizing an aluminophosphate or silicoaluminophosphate molecular sieve, a synthesis mixture is prepared by mixing a plurality of starting materials including at least a source of water, a source of phosphorus, a source of aluminum, optionally, a source of silicon and, and at least one organic directing agent for directing the formation of said molecular sieve. The starting materials are maintained at a temperature between 25° C. and 50° C., preferably between 30° C. and 45° C., during the mixing and until preparation of the starting mixture is complete, whereafter the synthesis mixture is heated to a crystallization temperature between about 100° C. and about 350° C. until crystals of the molecular sieve are produced. When crystallization is complete, the molecular sieve is recovered.
    Type: Application
    Filed: April 15, 2009
    Publication date: September 24, 2009
    Inventors: Machteld Maria Mertens, Thomas H. Colle
  • Publication number: 20090192276
    Abstract: One aspect of the invention relates to a method for formulating a molecular sieve catalyst composition, the method comprising the steps of: (a) providing a synthesized molecular sieve having been recovered in the presence of a flocculant; (b) thermally treating the synthesized molecular sieve at a temperature from about 50° C. to about 250° C. and under other conditions sufficient to form a thermally treated synthesized molecular sieve having a first LOI less than 26% and a first micropore surface area; (c) aging the thermally treated synthesized molecular sieve for at least one year; (d) analyzing the aged, thermally treated molecular sieve to determine a second micropore surface area, wherein the second micropore surface area is 3% or less lower than the first micropore surface area; and (e) combining the aged, thermally treated synthesized molecular sieve, a binder, and optionally a matrix material to produce an aged, formulated molecular sieve catalyst composition.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 30, 2009
    Inventors: Yun-Feng Chang, Luc R.M. Martens, Machteld Maria Mertens, Stephen N. Vaughn
  • Patent number: 7544851
    Abstract: In a method of synthesizing an aluminophosphate or silicoaluminophosphate molecular sieve, a synthesis mixture is prepared by mixing a plurality of starting materials including at least a source of water, a source of phosphorus, a source of aluminum, optionally, a source of silicon and, and at least one organic directing agent for directing the formation of said molecular sieve. The starting materials are maintained at a temperature between 25° C. and 50° C., preferably between 30° C. and 45° C., during the mixing and until preparation of the starting mixture is complete, whereafter the synthesis mixture is heated to a crystallization temperature between about 100° C. and about 350° C. until crystals of the molecular sieve are produced. When crystallization is complete, the molecular sieve is recovered.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: June 9, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Maria Mertens, Thomas H. Colle
  • Publication number: 20090111959
    Abstract: A crystalline material has a DDR framework type and, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element and n is from 0 to less than 0.01 and wherein the crystals of said material have an average diameter less than or equal to 2 microns. The material is synthesized in the presence of an N-ethyltropanium compound as directing agent.
    Type: Application
    Filed: November 14, 2006
    Publication date: April 30, 2009
    Inventors: Guang Cao, Machteld Maria Mertens, Karl G. Strohmaier, Hailian Li, Robert J. Saxton, Anil S. Guram, Jeffrey C. Yoder, Mark T. Muraoka, Anthony F. Volpe, JR.
  • Patent number: 7459136
    Abstract: A process for manufacturing a silicoaluminophosphate molecular sieve, the process comprising the steps of: (a) dissolving a silicon source into in a template at conditions sufficient to form a solution having a silicon concentration of at least 0.05 wt. %; (b) adding at least one aluminium source and at least one phosphorus source to at least a portion of the solution of step (a) to form a synthesis mixture, wherein at least the major portion of the aluminum source and phosphorus source are added to the solution after the solution has reached a dissolved silicon concentration of at least 0.03 wt.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 2, 2008
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventor: Machteld Maria Mertens
  • Patent number: 7335295
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: February 26, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Publication number: 20070276174
    Abstract: In a method of synthesizing a crystalline molecular sieve, a reaction mixture is formed comprising a source of phosphorus, a source of aluminum, at least one organic directing agent and, optionally, a source of silicon and crystallization of the reaction mixture is induced to form a slurry comprising the desired crystalline molecular sieve. The slurry is then maintained in contact with a flocculant for a period of 12 hours to 30 days before the crystalline molecular sieve is recovered from said slurry.
    Type: Application
    Filed: April 6, 2007
    Publication date: November 29, 2007
    Inventors: Luc R.M. Martens, Machteld Maria Mertens, Goetz Burgfels, Marcus Breuninger, Andreas Pritzl
  • Publication number: 20070249492
    Abstract: In a method of synthesizing an aluminophosphate or silicoaluminophosphate molecular sieve, a synthesis mixture is prepared by mixing a plurality of starting materials including at least a source of water, a source of phosphorus, a source of aluminum, optionally, a source of silicon and, and at least one organic directing agent for directing the formation of said molecular sieve. The starting materials are maintained at a temperature between 25° C. and 50° C., preferably between 30° C. and 45° C., during the mixing and until preparation of the starting mixture is complete, whereafter the synthesis mixture is heated to a crystallization temperature between about 100° C. and about 350° C. until crystals of the molecular sieve are produced. When crystallization is complete, the molecular sieve is recovered.
    Type: Application
    Filed: March 7, 2007
    Publication date: October 25, 2007
    Inventors: Machteld Maria Mertens, Thomas H. Colle
  • Publication number: 20070244341
    Abstract: A crystalline molecular sieve comprises at least [AlO4] and [PO4] tetrahedral units and comprising a first framework structure defining a first set of uniformly distributed pores having an average cross-sectional dimension of from about 0.3 to less than 2 nanometers and further comprising a second framework structure defining a second set of uniformly distributed pores having an average cross-sectional dimension of from 2 to 50 nanometers. The first framework structure is preferably of the CHA framework type.
    Type: Application
    Filed: March 2, 2007
    Publication date: October 18, 2007
    Inventors: Sebastien P.B. Kremer, Machteld Maria Mertens, Luc R.M. Martens