Patents by Inventor Madhava R. Kosuri

Madhava R. Kosuri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10183258
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 22, 2019
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Publication number: 20190001276
    Abstract: A carbon molecular sieve (CMS) membrane is made by pyrolyzing, to a peak pyrolysis temperature TP, a hollow fiber membrane having a polymeric sheath surrounding a polymeric core, anti-substructure collapse particles present in pores formed in the polymeric core help prevent collapse of pores formed in the hollow fiber membrane before pyrolysis. The anti-substructure collapse particles are made of a material or materials that either: i) have a glass transition temperature TG higher than TP, ii) have a melting point higher than TP, or ii) are completely thermally decomposed during said pyrolysis step at a temperature less than TP. The anti-substructure collapse particles are not soluble in a solvent used for dissolution of the polymeric material of the core.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 3, 2019
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Dean W. KRATZER, Madhava R. Kosuri, Canghai Ma
  • Patent number: 10143973
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 4, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel, Dean W. Kratzer
  • Patent number: 10112149
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 30, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Patent number: 10086337
    Abstract: A carbon molecular sieve (CMS) membrane is made by pyrolyzing, to a peak pyrolysis temperature TP, a hollow fiber membrane having a polymeric sheath surrounding a polymeric core, anti-substructure collapse particles present in pores formed in the polymeric core help prevent collapse of pores formed in the hollow fiber membrane before pyrolysis. The anti-substructure collapse particles are made of a material or materials that either: i) have a glass transition temperature TG higher than TP, ii) have a melting point higher than TP, or ii) are completely thermally decomposed during said pyrolysis step at a temperature less than TP. The anti-substructure collapse particles are not soluble in a solvent used for dissolution of the polymeric material of the core.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: October 2, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Dean W. Kratzer, Madhava R. Kosuri, Canghai Ma
  • Publication number: 20180001270
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL, Dean W. KRATZER
  • Publication number: 20180001269
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001271
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001272
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Patent number: 9816755
    Abstract: A process for separating carbon dioxide from a fluid containing carbon dioxide, NO2, and at least one of oxygen, argon, and nitrogen comprises the steps of separating at least part of the fluid into a carbon dioxide enriched stream, a carbon dioxide depleted stream comprising CO2 and at least one of oxygen, argon, and nitrogen and a NO2 enriched stream and recycling said NO2 enriched stream upstream of the separation step.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 14, 2017
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Gregoire Beasse, Sudhir S. Kulkarni, Madhava R. Kosuri, Matthieu Leclerc, Claire Bourhy-Weber
  • Publication number: 20160313058
    Abstract: A process for separating carbon dioxide from a fluid containing carbon dioxide, NO2, and at least one of oxygen, argon, and nitrogen comprises the steps of separating at least part of the fluid into a carbon dioxide enriched stream, a carbon dioxide depleted stream comprising CO2 and at least one of oxygen, argon, and nitrogen and a NO2 enriched stream and recycling said NO2 enriched stream upstream of the separation step.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Gregoire BEASSE, Sudhir S. Kulkarni, Madhava R. Kosuri, Matthieu Leclerc, Claire Bourhy-Weber
  • Patent number: 9458022
    Abstract: A process for separating carbon dioxide from a fluid containing carbon dioxide, NO2, and at least one of oxygen, argon, and nitrogen comprises the steps of separating at least part of the fluid into a carbon dioxide enriched stream, a carbon dioxide depleted stream comprising CO2 and at least one of oxygen, argon, and nitrogen and a NO2 enriched stream and recycling said NO2 enriched stream upstream of the separation step.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 4, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Gregoire Beasse, Sudhir S. Kulkarni, Madhava R. Kosuri, Mathieu Leclerc, Claire Bourhy-Weber
  • Patent number: 9375685
    Abstract: A composite fluid separation membrane includes a separation layer on a porous support layer where the separation layer comprises a cross-linked polysiloxane copolyether.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: June 28, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Sudhir S. Kulkarni, Madhava R. Kosuri, Fan Worley
  • Publication number: 20160151746
    Abstract: A carbon molecular sieve (CMS) membrane is made by pyrolyzing, to a peak pyrolysis temperature TP, a hollow fiber membrane having a polymeric sheath surrounding a polymeric core, anti-substructure collapse particles present in pores formed in the polymeric core help prevent collapse of pores formed in the hollow fiber membrane before pyrolysis. The anti-substructure collapse particles are made of a material or materials that either: i) have a glass transition temperature TG higher than TP, ii) have a melting point higher than TP, or ii) are completely thermally decomposed during said pyrolysis step at a temperature less than TP. The anti-substructure collapse particles are not soluble in a solvent used for dissolution of the polymeric material of the core.
    Type: Application
    Filed: August 14, 2015
    Publication date: June 2, 2016
    Inventors: Dean W. KRATZER, Madhava R. KOSURI, Canghai MA
  • Publication number: 20160151738
    Abstract: A membrane having a polyimide-containing separation layer in which —OH groups on a backbone of the polyimide are cross-linked with a cross-linking agent to form urethane linkages between the adjacent chains.
    Type: Application
    Filed: May 29, 2015
    Publication date: June 2, 2016
    Inventors: Sudhir S. KULKARNI, Madhava R. Kosuri, Edgar S. Sanders
  • Publication number: 20150273406
    Abstract: A composite fluid separation membrane includes a separation layer on a porous support layer where the separation layer comprises a cross-linked polysiloxane copolyether.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 1, 2015
    Inventors: Sudhir S. Kulkarni, Madhava R. Kosuri, Fan Worley
  • Publication number: 20150276309
    Abstract: A process for separating carbon dioxide from a fluid containing carbon dioxide, NO2, and at least one of oxygen, argon, and nitrogen comprises the steps of separating at least part of the fluid into a carbon dioxide enriched stream, a carbon dioxide depleted stream comprising CO2 and at least one of oxygen, argon, and nitrogen and a NO2 enriched stream and recycling said NO2 enriched stream upstream of the separation step.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 1, 2015
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et Exploitation des Procedes Georges Claude
    Inventors: Gregoire BEASSE, Sudhir S. KULKARNI, Madhava R. KOSURI, Mathieu LECLERC, Claire WEBER BOURHY
  • Patent number: 8747525
    Abstract: A composite hollow ceramic fiber includes a porous hollow core supporting a thin, dense sheath. The non-gas-tight core comprises a first ceramic compound and an interconnecting network of pores. The gas-tight sheath comprises a second ceramic compound. The fiber is made by extruding first and second suspensions of the first and second ceramic compounds in polymeric binders and solvent from a spinnerette and coagulating the nascent hollow fiber to effect phase inversion of the polymeric binders. The resultant green fiber is sintered in a two step process. First, the binder is burned off. Second, the sheath is densified and the second ceramic compound is sinter without fully sintering the first ceramic compound. The first ceramic compound has a melting point higher than that of the second ceramic compound.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 10, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Dean W. Kratzer, Tao Li, Madhava R. Kosuri
  • Patent number: 8741031
    Abstract: A composite hollow ceramic fiber includes a porous hollow core supporting a thin, dense sheath. The non-gas-tight core comprises a first ceramic material and an interconnecting network of pores. The gas-tight sheath comprises a second ceramic material. The fiber is made by extruding core and sheath suspensions from a spinnerette. The core suspension includes particles of the first ceramic material, a polymeric binder, a solvent, and a pore former material insoluble in the solvent. The sheath suspension includes particles of the second ceramic material, a polymeric binder and a solvent. The nascent hollow fiber is coagulated in a coagulant bath to effect phase inversion of the polymeric binders. The resultant green fiber is sintered in a two step process. First, the binders and pore former material are burned off. Second, the sheath is densified and the second ceramic material is sintered without fully sintering the core.
    Type: Grant
    Filed: July 31, 2011
    Date of Patent: June 3, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Madhava R. Kosuri, Dean W. Kratzer
  • Publication number: 20130025459
    Abstract: A composite hollow ceramic fiber includes a porous hollow core supporting a thin, dense sheath. The non-gas-tight core comprises a first ceramic material and an interconnecting network of pores. The gas-tight sheath comprises a second ceramic material. The fiber is made by extruding core and sheath suspensions from a spinnerette. The core suspension includes particles of the first ceramic material, a polymeric binder, a solvent, and a pore former material insoluble in the solvent. The sheath suspension includes particles of the second ceramic material, a polymeric binder and a solvent. The nascent hollow fiber is coagulated in a coagulant bath to effect phase inversion of the polymeric binders. The resultant green fiber is sintered in a two step process. First, the binders and pore former material are burned off. Second, the sheath is densified and the second ceramic material is sintered without fully sintering the core.
    Type: Application
    Filed: July 31, 2011
    Publication date: January 31, 2013
    Inventors: Madhava R. KOSURI, Dean W. KRATZER