Patents by Inventor Maged E. Beshai

Maged E. Beshai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8422508
    Abstract: A switching node comprises edge nodes interconnected by independent switch units. The switch units are arranged in at least one switch plane and the switch units of each switch plane are arranged in a matrix having several rows and several columns. Each edge node has a channel to a switch unit in each column in each switch plane and a channel from each switch unit in a selected column in each switch plane. Simple paths, each traversing only one switch unit in a switch plane, may be established for any directed edge-node pair. Additionally, several non-intersecting compound paths, each comprising at most two simple paths, may be established for any edge-node pair. A significant proportion of traffic may be routed through simple paths. The switching node employs distributed control scheme and scales gracefully from a capacity of a fraction of a terabit per second to thousands of terabits per second.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: April 16, 2013
    Inventor: Maged E Beshai
  • Patent number: 8406246
    Abstract: The invention provides a method and network communication equipment for low latency loss-free burst switching. Burst-transfer schedules are determined by controllers of bufferless core nodes according to specified bitrate allocations and distributed to respective edge nodes. In a composite-star network, burst schedules are initiated by any core node. Burst formation takes place at source edge nodes and a permissible burst size is determined according to an allocated bitrate of a burst stream to which the burst belongs. The permissible burst size is subject to constraints such as permissible burst-formation delay, a minimum guard-time requirement, and permissible delay jitter. A method of control-burst exchange between each edge node and each bufferless core node enables burst scheduling, time coordination, and loss-free burst switching. Both the payload bursts and control bursts are carried by optical channels connecting the edge nodes and the core nodes.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 26, 2013
    Assignee: Rockstar Consortium US LP
    Inventors: Maged E. Beshai, Bilel N. Jamoussi
  • Publication number: 20130051246
    Abstract: In a communication network comprising nodes and links between the nodes, a controller node disseminates link state information. A nodal routing table exists at each node comprising routes between pairs of nodes. The nodal routing table is either populated by the given node based on network information received from the controlling node or populated at the controlling node and received by the given node. Each node receives heartbeat signals from its neighbouring nodes. An unexpected delay between heartbeat signals may be perceived as a failure of a link. The perceived failure of that link is reported by the perceiving node to the controlling node. Upon receiving link failure information from a node, the controlling node may determine a subset of nodes in the network influenced by the link failure and indicate the link failure to the determined subset of influenced nodes.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: ROCKSTAR BIDCO, LP
    Inventors: Maged E. Beshai, Richard Vickers
  • Publication number: 20130045009
    Abstract: A network of global coverage, scalable to an access capacity of hundreds of petabits per second, is configured as independent bufferless switches with spectral routers connecting edge nodes to the switches. The switches are logically arranged in at least one matrix, the spectral routers are logically arranged into a matrix of upstream spectral routers and a matrix of downstream spectral routers. Each edge node has a link to an upstream spectral router in each column of the matrix of upstream spectral routers and a link from a downstream spectral router in each row of the matrix of downstream spectral routers. Preferably, all sets of edge nodes connecting to the upstream spectral routers are selected to be mutually orthogonal. Each switch is coupled to a respective switch controller and a respective time indicator. Each switch controller entrains time indicators of a set of subtending edge nodes to enable coherent switching.
    Type: Application
    Filed: October 20, 2012
    Publication date: February 21, 2013
    Inventor: Maged E. Beshai
  • Publication number: 20120275463
    Abstract: A scalable router-switch that grows from a capacity of a few gigabits per second to hundreds of terabits per second is disclosed. In one embodiment, the router-switch comprises a plurality of switch units arranged in a plurality of combinations. Within each combination, each switch unit cyclically connects to each other switch unit to form a contention-free temporal mesh. Each switch unit belongs to a number of combinations and any two combinations have at most one switch unit in common. The router-switch further includes a distributed-control system which comprises an outer controller associated with each of the switch units and an inner controller associated with each combination. The structural simplicity significantly simplifies the operation and control of the router-switch.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Inventor: Maged E. Beshai
  • Patent number: 8295698
    Abstract: A network of global coverage, scalable to hundreds of petabits per second, comprises bufferless switch units each of dimension n×n, n>1, arranged in a matrix of ? columns and ? rows, ?>1, interconnecting a maximum of ?×n edge nodes. Each edge node has ? upstream channels to ? switch units in ? different columns and ? downstream channels from ? switch units in ? different rows. All upstream channels to a switch unit are time-locked to the switch unit, thus enabling coherent switching at the switch unit. The switch units are preferably fast-switching optical nodes. Alternatively, the switch units may comprise fast-switching optical nodes each of dimension m×m, arranged in a first ?×? matrix, and latent space switches each of dimension n×n, n>1, arranged in a second ?×? matrix, ?>1, where ?×m=?×n. An edge node time locks to each optical node and each latent space switch to which it connects.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: October 23, 2012
    Inventor: Maged E Beshai
  • Publication number: 20120257636
    Abstract: A single rotator successively connects a set of access ports to a set of memory devices and a multi-port controller and connects the set of memory devices and the multi-port controller to the set of access ports. The rotator has a set of inlets and a set of outlets and cyclically connects each inlet to each outlet during a rotation cycle. A set of inlet selectors connecting to the inlets of the rotator and a set of outlet selectors connecting to the outlets of the rotator are coordinated to concurrently connect the access ports to the memory devices and to the master controller through the rotator, and concurrently connect the memory devices and the master controller to the access ports. Each memory device connects to an inlet selector and a corresponding transposed outlet selector.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 11, 2012
    Inventor: Maged E. Beshai
  • Publication number: 20120257616
    Abstract: A latent space switch based on a single rotator and an array of memory devices is disclosed. The switch interfaces with external nodes through a set of access ports. The rotator has a set of inlets and a set of outlets with each inlet connecting to each outlet during a time frame organized into time slots. During each time slot, an inlet alternately connects to an access port and a memory device while a transposed outlet of the inlet alternately connects to the same memory device and another access port. Multiple temporal multiplexers submit upstream control messages from the access ports to a multi-port master controller. Multiple temporal demultiplexers distribute downstream control messages sent from the master controller to the access ports.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 11, 2012
    Inventor: Maged E. Beshai
  • Publication number: 20120257637
    Abstract: A single transposing rotator successively connects a set of access ports to a set of memory devices and the set of memory devices to the set of access ports. A set of inlet selectors connecting to rotator inlets and a set of outlet selectors connecting to rotator outlets are coordinated to concurrently connect the access ports to the memory devices through the rotator, and concurrently connect the memory devices to the access ports. Each memory device connects to an inlet selector and a corresponding peer outlet selector. Multiple temporal multiplexers submit upstream control messages from the access ports to a multi-port master controller. Multiple temporal demultiplexers distribute downstream control messages sent from the master controller to the access ports. Alternatively, the multi-port master controller may connect to selected inlet selectors and corresponding peer outlet selectors for successively receiving upstream control messages and sending downstream control messages.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 11, 2012
    Inventor: Maged E. Beshai
  • Patent number: 8265085
    Abstract: In a communication network comprising nodes and links between the nodes, a controller node disseminates link state information. A nodal routing table exists at each node comprising routes between pairs of nodes. The nodal routing table is either populated by the given node based on network information received from the controlling node or populated at the controlling node and received by the given node. Each node receives heartbeat signals from its neighboring nodes. An unexpected delay between heartbeat signals may be perceived as a failure of a link. The perceived failure of that link is reported by the perceiving node to the controlling node. Upon receiving link failure information from a node, the controlling node may determine a subset of nodes in the network influenced by the link failure and indicate the link failure to the determined subset of influenced nodes.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: September 11, 2012
    Assignee: Rockstar Bidco LP
    Inventors: Maged E. Beshai, Richard Vickers
  • Publication number: 20120189003
    Abstract: A one-dimensional circulating switch may be defined by connections between several switch modules and one or more temporal cyclic rotators. Where a switch module that is part of a first one-dimensional circulating switch is also connected one or more temporal cyclic rotators that define a second one-dimensional circulating switch, a two-dimensional circulating switch is formed. A two-dimensional circulating switch is flexible and may scale to capacities ranging from a few gigabits per second to multiple Petabits per second.
    Type: Application
    Filed: February 15, 2012
    Publication date: July 26, 2012
    Applicant: ROCKSTAR BIDCO, LP
    Inventor: MAGED E. BESHAI
  • Patent number: 8223759
    Abstract: A scalable router-switch that grows from a capacity of a few gigabits per second to hundreds of terabits per second is disclosed. In one embodiment, the router-switch comprises a plurality of switch units arranged in a plurality of combinations. Within each combination, each switch unit cyclically connects to each other switch unit to form a contention-free temporal mesh. Each switch unit belongs to a number of combinations and any two combinations have at most one switch unit in common. The router-switch further includes a distributed-control system which comprises an outer controller associated with each of the switch units and an inner controller associated with each combination. The structural simplicity significantly simplifies the operation and control of the router-switch.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 17, 2012
    Inventor: Maged E Beshai
  • Patent number: 8204050
    Abstract: Switch elements, each receiving data from external sources and transmitting data to external sinks, are interconnected through a single rotator to form a switching node. The single rotator has a number of inlets equal to the number of switch elements and a number of outlets equal to the number of switch elements. A first set of channels connects the switch elements to inlets of the rotator and a second set of channels connects the outlets of the rotator to the switch elements. The connectivity pattern of the second set of channels is a transposition of the connectivity pattern of the first set of channels in order to preserve sequential data order of switched data. A controller communicatively coupled to the switch elements exchanges timing data with external nodes of a time-coherent network and schedules data transfer among the switch elements.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: June 19, 2012
    Inventor: Maged E Beshai
  • Patent number: 8139570
    Abstract: A high capacity distributed switching system comprises electronic edge nodes connected to a balanced bufferless switch which may be electronic or optical. The balanced bufferless switch comprises a balanced connector and a switch fabric. The balanced connector comprises an array of temporally cyclic rotator units having graduated rotation shifts and each having a prime number of output ports. The switch fabric may be a mesh interconnection of switch modules. Due to the use of the balanced connector, establishing a path through the switch fabric requires at most a second-order time-slot matching process for a high proportion of connection requests with a much reduced need for a third-order time-slot matching process required in a conventional mesh structure.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: March 20, 2012
    Assignee: Rockstar Bidco LP
    Inventor: Maged E. Beshai
  • Patent number: 8130753
    Abstract: A one-dimensional circulating switch may be defined by connections between several switch modules and one or more temporal cyclic rotators. Where a switch module that is part of a first one-dimensional circulating switch is also connected one or more temporal cyclic rotators that define a second one-dimensional circulating switch, a two-dimensional circulating switch is formed. A two-dimensional circulating switch is flexible and may scale to capacities ranging from a few gigabits per second to multiple Petabits per second.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 6, 2012
    Assignee: Rockstar Bidco, LP
    Inventor: Maged E. Beshai
  • Publication number: 20120045204
    Abstract: Multiple switch planes, each having meshed bufferless switch units, connect source nodes to sink nodes to form a communications network. Each directed pair of source and sink nodes has a first-order path traversing a single switch unit in a corresponding switch plane and multiple second-order paths each traversing two switch units in one of the remaining switch planes. To reduce processing effort and minimize requisite switching hardware, connectivity patterns of source nodes and sink nodes to the switch planes are selected so that each pair of source node and sink node connects only once to a common switch unit. Widely-varying flow rates may be allocated from each source node to the sink nodes. To handle frequent changes of flow-rate allocations, in order to follow variations of traffic distribution, a high-throughput scheduling system employing coordinated multiple scheduler units is provided in each switch plane.
    Type: Application
    Filed: October 29, 2011
    Publication date: February 23, 2012
    Inventor: Maged E. Beshai
  • Patent number: 8064341
    Abstract: Expanding the coverage of a time-shared network comprising electronic edge nodes interconnected by bufferless fast-switching optical nodes is enabled by combining spatial switching with temporal switching. The output side of each edge node preferably connects to a large number of core switches through individual time-locked channels and the input side preferably connects to each of a small number of core switches through a channel band having a sufficiently large number of channels. Wavelength routers may be used to aggregate individually-routed channels into WDM links.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: November 22, 2011
    Assignee: Nortel Networks Limited
    Inventor: Maged E. Beshai
  • Patent number: 8050257
    Abstract: A high capacity network comprises a plurality of edge nodes with asymmetrical connections to a plurality of switch planes, each switch plane comprising fully meshed fast-switching optical switch units. Upstream wavelength channels from each source edge node connect to different switch planes in a manner which ensures that upstream wavelength channels from any two edge nodes connect to a common switch unit in at most a predefined number, preferably one, of switch planes. Thus, switch units in different switch planes connect to upstream channels from orthogonal subsets of source edge nodes. In contrast, downstream wavelength channels from a switch unit in each switch plane connect to one set of sink edge nodes. In an alternate arrangement, the upstream and downstream asymmetry may be reversed.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 1, 2011
    Inventor: Maged E Beshai
  • Patent number: 8031598
    Abstract: Burst-switching nodes using a common-memory or a time shared space switch and employing flow-rate control are disclosed. Within a switching node, data bursts are segmented into data segments of a fixed size with some segments containing information bits as well as null bits. A switching node handles data streams allocated different flow rates and, for any data stream, the internal flow rate through the switching node can be higher than the external flow rate due to null padding of segmented data. The switching node is provided with a sufficient internal capacity expansion in order to offset the effect of null padding. A controller of the switching node is provided with a flow-rate-regulation apparatus to enable scheduling the transfer of data segments across the switching node in a manner that guarantees adherence to the allocated information flow rates.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: October 4, 2011
    Assignee: Nortel Networks Limited
    Inventors: Maged E. Beshai, Bilel N. Jamoussi
  • Patent number: 7983273
    Abstract: A scheduling apparatus for a switch includes multiple schedulers which are assigned in a variety of ways to non-intersecting control domains for establishing connections through the switch. The control domains are defined by spatial and temporal aspects. The control domains may be dynamically selected and assigned to schedulers in a manner that achieves a high throughput gain. Control domains may be considered in a cyclic and/or a pipeline discipline for accommodating connection requests. The invention enables the realization of a highly scalable controller of a switching node of fine granularity that scales to capacities of the order of hundreds of terabits per second.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: July 19, 2011
    Assignee: Nortel Networks Limited
    Inventor: Maged E. Beshai