Patents by Inventor Makoto Ikegami

Makoto Ikegami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7690218
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: April 6, 2010
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Publication number: 20090241573
    Abstract: A subcool condenser having a condensation heat exchange portion, a receive portion and a supercool heat exchange portion is used as an outdoor heat exchanger that functions as a radiator in a cooling operation mode so that COP in the cooling operation mode is increased. In contrast, in a heating operation mode, a refrigerant bypass device that causes the refrigerant to flow so as to bypass the supercool heat exchange portion is provided so that pressure loss generated in the refrigerant flowing through the outdoor heat exchanger is decreased. Thereby, driving force of a compressor can be decreased and COP in the heating operation mode can be improved.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 1, 2009
    Applicant: DENSO CORPORATION
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Yoshiaki Takano
  • Patent number: 7547539
    Abstract: Disclosed is a reaction apparatus for organic and/or other substance(s) employing supercritical fluid(s) and/or subcritical fluid(s) permitting injection of organic substance(s) and/or other reactant substance(s) in homogeneous state(s) to reactor(s) without occurrence of clogging at location(s) of such injection, and also permitting actuation to occur in industrial fashion and at high energy efficiency. Reactor(s) (12) of this reaction apparatus comprise cylinder(s) (12a) and piston(s) (12b) provided at such cylinder(s) (12a).
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: June 16, 2009
    Assignees: Yanmar Co., Ltd.
    Inventors: Makoto Ikegami, Ken Kawabe
  • Publication number: 20090095013
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator located to evaporate refrigerant flowing out of the ejector, a branch passage branched from a branch portion between the radiator and a nozzle portion of the ejector and coupled to a refrigerant suction port of the ejector, a throttling unit located in the branch passage, and a second evaporator located downstream of the throttling unit to evaporate refrigerant. In the ejector cycle system, a variable throttling device is located in a refrigerant passage between a refrigerant outlet of the radiator and the branch portion to decompress the refrigerant flowing out of the radiator.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 16, 2009
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Publication number: 20090094968
    Abstract: An exhaust-gas purification device disposition structure of a vehicle, comprises a fuel tank with a fuel supply port which is disposed so as to be open to an outside of a vehicle compartment, and a urea tank to accommodate urea water solution as deoxidizer to purify exhaust gas. The urea tank is disposed outside the vehicle compartment, and a pouring port of the urea tank is provided inside the vehicle compartment. Accordingly, the urea water solution can be surely prevented from entering into the vehicle compartment even in case of the breakage of the urea tank, and the mistake of supplying the wrong liquid into the wrong supply (pouring) port tank which may be made by confusing the ports can be avoided.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 16, 2009
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Makoto IKEGAMI, Yukiichirou SHIMADA, Noritaka SAKIYAMA, Noriyoshi SAHASHI, Kota MATSUE, Chikara ISHIHARA, Shinya MATSUMOTO, Yoshikazu NISHIMURA, Yoshiaki MURAKAMI, Masamitsu TANAKA, Ken UEKI
  • Publication number: 20090090129
    Abstract: In a refrigerant cycle device with an ejector, a branch portion is located at an upstream side of a nozzle portion of the ejector so that the refrigerant flowing out of an exterior heat exchanger is branched into first and second streams in a cooling operation mode. A passage switching portion is configured such that the refrigerant of the first stream flows through the nozzle portion of the ejector, and the refrigerant of the second stream flows through the decompression unit, the using-side heat exchanger, and the refrigerant suction port of the ejector, in the cooling operation mode. In contrast, the refrigerant discharged from the compressor flows into the nozzle portion after passing through the using-side heat exchanger, and the refrigerant flowing out of the exterior heat exchanger flows into the refrigerant suction port of the ejector, in the heating operation mode.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicants: DENSO CORPORATION, Nippon Soken, Inc.
    Inventors: Makoto Ikegami, Etsuhisa Yamada, Haruyuki Nishijima, Hiroshi Oshitani, Yukikatsu Ozaki
  • Publication number: 20080264097
    Abstract: A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 30, 2008
    Applicant: Denso Corporation
    Inventors: Naohisa Ishizaka, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho, Hiroshi Oshitani, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama, Etsuhisa Yamada
  • Patent number: 7367200
    Abstract: An ejector cycle device includes an ejector having a nozzle portion which decompresses refrigerant flowing out of a radiator, a first evaporator for evaporating refrigerant from the ejector, and a second evaporator provided in a branch passage that is branched from a position between the refrigerant radiator and the ejector and is connected to a refrigerant suction port of the ejector. Furthermore, a throttle member is disposed in the branch passage to decompress refrigerant and adjust a flow amount of refrigerant, and the second evaporator is disposed in the branch passage between the throttle member and the refrigerant suction port. In the ejector cycle device having both the first and second evaporators, a defrosting operation of one the first and second evaporators can be performed while the other one of the first and second evaporators is operated to have a cooling function.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Haruyuki Nishijima, Hiroshi Oshitani, Etsuhisa Yamada, Takuo Maehara
  • Publication number: 20080098757
    Abstract: In a refrigerant cycle device having an ejector, a branch portion for branching a flow of refrigerant flowing out of the ejector into at least a first refrigerant stream and a second refrigerant stream is located. A first evaporator for evaporating the refrigerant of the first refrigerant stream is located to allow the refrigerant to flow to a suction side of the compressor, and a second evaporator for evaporating the refrigerant of the second refrigerant stream is located to allow the refrigerant to flow to an upstream side of a refrigerant suction port of the ejector. In addition, the branch portion is located to maintain a dynamic pressure of the refrigerant flowing out of the ejector, and the second evaporator is connected to the branch portion in a range where the dynamic pressure can be applied to an inside of the second evaporator.
    Type: Application
    Filed: October 25, 2007
    Publication date: May 1, 2008
    Applicant: DENSO Corporation
    Inventors: Hirotsugu Takeuchi, Makoto Ikegami, Haruyuki Nishijima
  • Patent number: 7320229
    Abstract: A branch passage, which is branched at a point on an upstream side of an ejector, is connected to a refrigerant suction inlet of the ejector. An evaporator is arranged in the branch passage, and a capillary tube is arranged on an upstream side of the evaporator.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: January 22, 2008
    Assignee: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama
  • Publication number: 20070271942
    Abstract: An object of the invention is to effectively defrost multiple a vaporizing devices provided in an ejector cycle. In one of the embodiments, electric heating devices are provided for the respective first and second vaporizing devices, to carry out defrosting operations for each vaporizing device. In addition, a defrosting operation is carried out for the second vaporizing device by hot-gas from a compressor.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 29, 2007
    Applicant: DENSO Corporation
    Inventors: Naoki Yokoyama, Hirotsugu Takeuchi, Makoto Ikegami, Yasuhiro Yamamoto
  • Patent number: 7254961
    Abstract: A first evaporator is arranged on a downstream side of an ejector, and a second evaporator is connected to a refrigerant suction inlet of the ejector. A refrigerant evaporation temperature of the second evaporator is lower than that of the first evaporator. The first and second evaporators are used to cool a common subject cooling space and are arranged one after the other in a flow direction of air to be cooled.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 14, 2007
    Assignee: DENSO Corporation
    Inventors: Hiroshi Oshitani, Yasushi Yamanaka, Hirotsugu Takeuchi, Katsuya Kusano, Makoto Ikegami, Yoshiaki Takano, Naohisa Ishizaka, Takayuki Sugiura
  • Publication number: 20070163293
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 19, 2007
    Applicant: DENSO Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Publication number: 20070039350
    Abstract: A branch structure is provided on an upstream side of an ejector in a refrigerant cycle device, for branching and supplying refrigerant to a nozzle of the ejector and to an evaporator connected to a refrigerant suction port of the ejector. For example, the branch structure is constructed with an introduction pipe part for introducing the refrigerant, and at least two arm parts branched out from the introduction pipe part. The two arm parts are substantially symmetrical with respect to the introduction pipe part, while being positioned substantially under the same condition with respect to a direction of gravity.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 22, 2007
    Applicant: DENSO Corporation
    Inventors: Hirotsugu Takeuchi, Makoto Ikegami
  • Publication number: 20070039337
    Abstract: An ejector cycle device includes a compressor, a refrigerant radiator, an ejector having a nozzle part and a refrigerant suction port, and a branch passage for introducing refrigerant branched on an upstream side of the nozzle part of the ejector in a refrigerant flow into the refrigerant suction port. Furthermore, a first evaporator is arranged on a downstream side of the ejector in the refrigerant flow, and a second evaporator is arranged in the branch passage. In addition, in the ejector cycle device, a refrigerant flow rate ratio (?) of a flow rate of refrigerant flowing in the second evaporator to a flow rate of refrigerant discharged from the compressor is set within a range from 0.07 or more to 0.93 or less. In this case, COP of the ejector cycle device can be effectively improved.
    Type: Application
    Filed: August 9, 2006
    Publication date: February 22, 2007
    Applicant: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Etsuhisa Yamada, Makoto Ikegami, Hiroshi Oshitani
  • Patent number: 7178359
    Abstract: A first evaporator evaporates refrigerant, which is outputted from an ejector. A refrigerant outlet of the first evaporator is connected to a suction inlet of a compressor, which is connected to a radiator. A branched passage branches a flow of the refrigerant at a corresponding branching point located between the radiator and the ejector. The branched passage conducts the branched flow of the refrigerant to a suction inlet of the ejector. A flow rate control valve is arranged in the branched passage between a radiator and an ejector on a downstream side of the radiator to depressurize refrigerant outputted from the radiator. A second evaporator is arranged in the first branched passage.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: February 20, 2007
    Assignee: Denso Corporation
    Inventors: Hiroshi Oshitani, Yasushi Yamanaka, Hirotsugu Takeuchi, Katsuya Kusano, Makoto Ikegami, Yasukazu Aikawa
  • Publication number: 20070028646
    Abstract: A branch passage, which is branched at a point on an upstream side of an ejector, is connected to a refrigerant suction inlet of the ejector. An evaporator is arranged in the branch passage, and a capillary tube is arranged on an upstream side of the evaporator.
    Type: Application
    Filed: July 31, 2006
    Publication date: February 8, 2007
    Applicant: DENSO Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama
  • Publication number: 20070000262
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator that evaporates refrigerant flowing out of the ejector, a throttling unit located in a branch passage and depressurizes refrigerant to adjust a flow rate of refrigerant, and a second evaporator located downstream of the throttling unit. In the ejector cycle system, a flow ratio adjusting means adjusts a flow ratio between a first refrigerant flow amount depressurized and expanded in a nozzle portion of the ejector and a second refrigerant flow amount drawn into a refrigerant suction port of the ejector, based on a physical quantity related to at least one of a state of refrigerant in the refrigerant cycle, a temperature of a space to be cooled by the first and second evaporators, and an ambient temperature of the space.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 4, 2007
    Applicant: DENSO Corporation
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Publication number: 20060254308
    Abstract: In an ejector cycle device having an ejector, an evaporator is arranged in a refrigerant branch passage connected to a refrigerant suction port of the ejector, an opening/closing member for opening and closing a refrigerant passage is disposed to prevent refrigerant from flowing into the evaporator, and a control unit intermittently controls operation of the compressor. In the ejector cycle device, the control unit brings the opening/closing member into a closing state in a time period for which the operation of the compressor is stopped. Accordingly, it can restrict liquid refrigerant from collecting in the evaporator while the compressor is stopped.
    Type: Application
    Filed: May 15, 2006
    Publication date: November 16, 2006
    Applicant: DENSO Corporation
    Inventors: Naoki Yokoyama, Hiroshi Oshitani, Hirotsugu Takeuchi, Haruyuki Nishijima, Makoto Ikegami, Takuo Maehara, Etsuhisa Yamada
  • Patent number: 7131292
    Abstract: A fluid in the state of two phase containing gas and liquid, which flows into the separating space, is revolved along an inner wall of the separating space and a liquid flow outlet is opened toward a revolving flow of the fluid and arranged in a lower portion of the separating space. The liquid-phase fluid which is a part of the revolving flow of the fluid flows out through the liquid flow outlet.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: November 7, 2006
    Assignee: DENSO Corporation
    Inventors: Makoto Ikegami, Haruyuki Nishijima, Hirotsugu Takeuchi, Hisatsugu Matsunaga, Toru Ikemoto