Patents by Inventor Mamiko Tsuchiya

Mamiko Tsuchiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8323917
    Abstract: The present invention enables screening for compounds that inhibit the transport of GPI-anchored proteins to fungal cell walls, using a simple assay for transacylation to GlcN-PI using membrane fraction expressing GWT1 protein. New antifungal agents can be created that inhibit the synthesis of fungal cell walls and also inhibit adhesion to host cells by inhibiting the transport of GPI-anchored proteins to fungal cell walls.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: December 4, 2012
    Assignees: National Institute of Advanced Industrial Science and Technology, Eisai R&D Management Co., Ltd.
    Inventors: Kappei Tsukahara, Mamiko Tsuchiya, Yoshifumi Jigami, Kenichi Nakayama, Mariko Umemura, Michiyo Okamoto
  • Patent number: 7999090
    Abstract: The present invention provides isolated DNA encoding a GWT1 protein having activity to confer resistance of a fungus against a compound of formula Ia, and wherein a defect of a function of the GWT1 protein leads to a decrease in the amount of a glycosylphosphatidylinositol (GPI)-anchored protein in the cell wall of a fungus.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: August 16, 2011
    Assignee: Eisai Co., Ltd
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Patent number: 7928209
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, fungal genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. These genes encode proteins participating in fungal cell wall synthesis. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 19, 2011
    Assignee: Eisai R & D Management Co. Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Patent number: 7910712
    Abstract: The present invention provides isolated DNA encoding a GWT1 protein having activity to confer resistance of a fungus against a compound of formula Ia, and wherein a defect of a function of the GWT1 protein leads to a decrease in the amount of a glycosylphosphatidylinositol (GPI)-anchored protein in the cell wall of a fungus.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: March 22, 2011
    Assignee: Eisai R&D Management Co., Ltd
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Patent number: 7897387
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: March 1, 2011
    Assignee: Eisai R&D Management Co., Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20090325228
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: April 15, 2008
    Publication date: December 31, 2009
    Applicant: EISAI R&D MANAGEMENT CO., LTD.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Oba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Patent number: 7541332
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: June 2, 2009
    Assignee: Eisai R&D Management Co., Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20090117586
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: April 1, 2008
    Publication date: May 7, 2009
    Applicant: EISAI R&D MANAGEMENT CO., LTD.
    Inventors: KAPPEI TSUKAHARA, KATSURA HATA, KOJI SAGANE, KAZUTAKA NAKAMOTO, MAMIKO TSUCHIYA, NAOAKI WATANABE, FUMINORI OHBA, ITARU TSUKADA, NORIHIRO UEDA, KEIGO TANAKA, JUNKO KAI
  • Publication number: 20090098636
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: April 15, 2008
    Publication date: April 16, 2009
    Applicant: EISAI R&D MANAGEMENT CO., LTD
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20080261272
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 23, 2008
    Applicant: EISAI R&D MANAGEMENT CO., LTD
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20080166765
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, fungal genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. These genes encode proteins participating in fungal cell wall synthesis. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: December 17, 2007
    Publication date: July 10, 2008
    Applicant: Eisai R&D Management, Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Oba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Patent number: 7375204
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, fungal genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. These genes encode proteins participating in fungal cell wall synthesis. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 20, 2008
    Assignee: Eisai R&D Management Co., Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20060240429
    Abstract: The present invention enables screening for compounds that inhibit the transport of GPI-anchored proteins to fungal cell walls, using a simple assay for transacylation to GlcN-PI using membrane fraction expressing GWT1 protein. New antifungal agents can be created that inhibit the synthesis of fungal cell walls and also inhibit adhesion to host cells by inhibiting the transport of GPI-anchored proteins to fungal cell walls.
    Type: Application
    Filed: November 21, 2003
    Publication date: October 26, 2006
    Inventors: Kappei Tsukahara, Mamiko Tsuchiya, Yoshifumi Jigami, Kenichi Nakayama, Mariko Umemura, Michiyo Okamoto
  • Publication number: 20060234283
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: April 21, 2006
    Publication date: October 19, 2006
    Applicant: Eisai Co., Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20060234349
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed. Therefore, through the novel compounds, the present invention showed that antifungal agents having a novel mechanism, i.e. inhibiting the process that transports GPI-anchored proteins to the cell wall, could be achieved.
    Type: Application
    Filed: April 21, 2006
    Publication date: October 19, 2006
    Applicant: Eisai Co., Ltd.
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Ohba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai
  • Publication number: 20040038239
    Abstract: A reporter system reflecting the transport process that transports GPI-anchored proteins to the cell wall was constructed and compounds inhibiting this process were discovered. Further, genes conferring resistance to the above compounds were identified and methods of screening for compounds that inhibit the activity of the proteins encoded by these genes were developed.
    Type: Application
    Filed: May 14, 2003
    Publication date: February 26, 2004
    Inventors: Kappei Tsukahara, Katsura Hata, Koji Sagane, Kazutaka Nakamoto, Mamiko Tsuchiya, Naoaki Watanabe, Fuminori Oba, Itaru Tsukada, Norihiro Ueda, Keigo Tanaka, Junko Kai