Patents by Inventor Manabu Takei

Manabu Takei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080153212
    Abstract: A semiconductor device and method of manufacturing the same includes an n?-single crystal silicon substrate, with an oxide film selectively formed thereon. On the oxide film, gate polysilicon is formed. The surface of the gate polysilicon is covered with a gate oxide film whose surface is covered with a cathode film doped in an n-type with an impurity concentration higher than that of the substrate as an n?-drift layer. In the cathode film, a section in contact with the substrate becomes an n+-buffer region with a high impurity concentration, next to which a p-base region is formed. Next to the p-base region, an n+-source region is formed. On the cathode film, an interlayer insulator film is selectively formed on which an emitter electrode is formed. A semiconductor device such as an IGBT is obtained with a high rate of acceptable products, an excellent on-voltage to turn-off loss tradeoff and an excellent on-voltage to breakdown voltage tradeoff.
    Type: Application
    Filed: February 4, 2008
    Publication date: June 26, 2008
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventor: Manabu TAKEI
  • Publication number: 20080102582
    Abstract: A manufacturing method for a super-junction semiconductor device is disclosed. The methods includes a first step of depositing, on a low-resistivity semiconductor substrate of one conductivity type, at least an epitaxial layer of the one conductivity type which is to become a drift layer; a second step of forming a base region(s) of the other conductivity type and source regions of the one conductivity type to be used for formation of MOS gate structures; a third step of forming, by anisotropic vapor-phase etching using an insulating film mask, trenches that penetrate through the base region(s) and reach the low-resistivity semiconductor substrate or its vicinity; and a fourth step of burying epitaxial layers of the other conductivity type in the respective trenches, the first to fourth steps being executed in this order.
    Type: Application
    Filed: September 13, 2007
    Publication date: May 1, 2008
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventor: Manabu Takei
  • Patent number: 7355263
    Abstract: A semiconductor device and method of manufacturing the same includes an n?-single crystal silicon substrate, with an oxide film selectively formed thereon. On the oxide film, gate polysilicon is formed. The surface of the gate polysilicon is covered with a gate oxide film whose surface is covered with a cathode film doped in an n-type with an impurity concentration higher than that of the substrate as an n?-drift layer. In the cathode film, a section in contact with the substrate becomes an n+-buffer region with a high impurity concentration, next to which a p-base region is formed. Next to the p-base region, an n+-source region is formed. On the cathode film, an interlayer insulator film is selectively formed on which an emitter electrode is formed. A semiconductor device such as an IGBT is obtained with a high rate of acceptable products, an excellent on-voltage to turn-off loss tradeoff and an excellent on-voltage to breakdown voltage tradeoff.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 8, 2008
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Manabu Takei
  • Patent number: 7355571
    Abstract: A display panel (110) includes a plurality of optical elements (OEL) each having a pair of electrodes and performing an optical operation according to current passing between the pair of electrodes, a current line (DL), a switch circuit (Tr2) that passes a write current (Ia) with a predetermined current value through the current line (DL) during a selection time (Tse) and stops passing current during a nonselection time (Tnse), and a current storage circuit (Tr1, Tr3, Cs, Cp) that stores current data according to the current value of the write current (Ia) passing through the current line (DL) during the selection time (Tse) and that supplies a drive current (Ib) having a current value, which is obtained by subtracting a predetermined offset current (Ioff) from the current value of the stored write current (Ia), to the optical elements (OEL) during the nonselection time (Tnse).
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: April 8, 2008
    Assignee: Casio Computer Co., Ltd.
    Inventors: Hiroyasu Yamada, Manabu Takei
  • Publication number: 20070292995
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Application
    Filed: August 22, 2007
    Publication date: December 20, 2007
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventors: Michio NEMOTO, Manabu TAKEI, Tatsuya NAITO
  • Patent number: 7307330
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: December 11, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Michio Nemoto, Manabu Takei, Tatsuya Naito
  • Publication number: 20070262362
    Abstract: A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
    Type: Application
    Filed: July 20, 2007
    Publication date: November 15, 2007
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventors: Setsuko WAKIMOTO, Manabu TAKEI, Shinji FUJIKAKE
  • Publication number: 20070235755
    Abstract: A semiconductor device and method of manufacturing the same includes an n?-single crystal silicon substrate, with an oxide film selectively formed thereon. On the oxide film, gate polysilicon is formed. The surface of the gate polysilicon is covered with a gate oxide film whose surface is covered with a cathode film doped in an n-type with an impurity concentration higher than that of the substrate as an n?-drift layer. In the cathode film, a section in contact with the substrate becomes an n+-buffer region with a high impurity concentration, next to which a p-base region is formed. Next to the p-base region, an n+-source region is formed. On the cathode film, an interlayer insulator film is selectively formed on which an emitter electrode is formed. A semiconductor device such as an IGBT is obtained with a high rate of acceptable products, an excellent on-voltage to turn-off loss tradeoff and an excellent on-voltage to breakdown voltage tradeoff.
    Type: Application
    Filed: June 14, 2007
    Publication date: October 11, 2007
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventor: Manabu TAKEI
  • Publication number: 20070224769
    Abstract: A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
    Type: Application
    Filed: May 29, 2007
    Publication date: September 27, 2007
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventors: Setsuko Wakimoto, Manabu Takei, Shinji Fujikake
  • Patent number: 7262100
    Abstract: A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: August 28, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Setsuko Wakimoto, Manabu Takei, Shinji Fujikake
  • Patent number: 7262478
    Abstract: A semiconductor device and method of manufacturing the same includes an n?-single crystal silicon substrate, with an oxide film selectively formed thereon. On the oxide film, gate polysilicon is formed. The surface of the gate polysilicon is covered with a gate oxide film whose surface is covered with a cathode film doped in an n-type with an impurity concentration higher than that of the substrate as an n?-drift layer. In the cathode film, a section in contact with the substrate becomes an n+-buffer region with a high impurity concentration, next to which a p-base region is formed. Next to the p-base region, an n+-source region is formed. On the cathode film, an interlayer insulator film is selectively formed on which an emitter electrode is formed. A semiconductor device such as an IGBT is obtained with a high rate of acceptable products, an excellent on-voltage to turn-off loss tradeoff and an excellent on-voltage to breakdown voltage tradeoff.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: August 28, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Manabu Takei
  • Publication number: 20070158740
    Abstract: A semiconductor device including an n-type semiconductor substrate, a p-type channel region and a junction layer provided between the n-type semiconductor substrate and the p-type channel region is disclosed. The junction layer has n-type drift regions and p-type partition regions alternately arranged in the direction in parallel with the principal surface of the n-type semiconductor substrate. The p-type partition region forming the junction layer is made to have a higher impurity concentration than the n-type drift region. This enables the semiconductor device to have an enhanced breakdown voltage and, at the same time, have a reduced on-resistance.
    Type: Application
    Filed: November 28, 2006
    Publication date: July 12, 2007
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventors: Koh Yoshikawa, Akio Sugi, Kouta Takahashi, Manabu Takei, Haruo Nakazawa, Noriyuki Iwamuro
  • Publication number: 20070072359
    Abstract: A semiconductor device is disclosed that reduces the reverse leakage current caused by reverse bias voltage application and reduces the on-voltage of the IGBT. A two-way switching device using the semiconductor devices is provided, and a method of manufacturing the semiconductor device is disclosed. The reverse blocking IGBT reduces the reverse leakage current and the on-voltage by bringing portions of an n?-type drift region 1 that extend between p-type base regions and an emitter electrode into Schottky contact to form Schottky junctions.
    Type: Application
    Filed: November 9, 2006
    Publication date: March 29, 2007
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventors: Manabu TAKEI, Tatsuya NAITO, Michio NEMOTO
  • Patent number: 7157785
    Abstract: A semiconductor device is disclosed that reduces the reverse leakage current caused by reverse bias voltage application and reduces the on-voltage of the IGBT. A two-way switching device using the semiconductor devices is provided, and a method of manufacturing the semiconductor device is disclosed. The reverse blocking IGBT reduces the reverse leakage current and the on-voltage by bringing portions of an n?-type drift region 1 that extend between p-type base regions and an emitter electrode into Schottky contact to form Schottky junctions.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: January 2, 2007
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Manabu Takei, Tatsuya Naito, Michio Nemoto
  • Publication number: 20060249797
    Abstract: On the top surface of a thin semiconductor wafer, top surface structures forming a semiconductor chip are formed. The top surface of the wafer is affixed to a supporting substrate with a double-sided adhesive tape. Then, from the bottom surface of the thin semiconductor wafer, a trench, which becomes a scribing line, is formed by wet anisotropic etching so that side walls of the trench are exposed. On the side walls of the trench with the crystal face exposed, an isolation layer with a conductivity type different from that of the semiconductor wafer for holding a reverse breakdown voltage is formed simultaneously with a collector region of the bottom surface diffused layer by ion implantation, followed by annealing with laser irradiation. The side walls form a substantially V-shaped or trapezoidal-shaped cross section, with an angle of the side wall relative to the supporting substrate being 30-70°. The double-sided adhesive tape is then removed from the top surface to produce semiconductor chips.
    Type: Application
    Filed: March 27, 2006
    Publication date: November 9, 2006
    Applicant: FUJI ELECTRIC HOLDING CO., LTD.
    Inventors: Haruo Nakazawa, Kazuo Shimoyama, Manabu Takei
  • Publication number: 20060192204
    Abstract: A thin film transistor panel including: a transparent substrate; scanning lines made of a light blocking electroconductive material to be formed on the transparent substrate; data lines formed on the transparent substrate to be perpendicular to the scanning lines and made of a light blocking electroconductive material; thin film transistors, each provided with a transparent gate electrode connected to one of the scanning lines, a transparent drain electrode connected to one of the data lines, a transparent source electrode and a transparent semiconductor thin film; and transparent pixel electrodes connected to the thin film transistors, wherein each of the pixel electrodes is formed to cover at least a part of the gate electrode of each of the thin film transistors.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 31, 2006
    Applicant: Casio Computer Co., Ltd.
    Inventors: Ikuhiro Yamaguchi, Manabu Takei, Motohiko Yoshida
  • Publication number: 20060186508
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Application
    Filed: April 4, 2006
    Publication date: August 24, 2006
    Applicant: Fuji Electric Holdings Co., Ltd.
    Inventors: Michio Nemoto, Manabu Takei, Tatsuya Naito
  • Patent number: 7049674
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: May 23, 2006
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Michio Nemoto, Manabu Takei, Tatsuya Naito
  • Publication number: 20060076583
    Abstract: A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
    Type: Application
    Filed: September 2, 2005
    Publication date: April 13, 2006
    Applicant: Fuji Electric Holdings Co., Ltd.
    Inventors: Setsuko Wakimoto, Manabu Takei, Shinji Fujikake
  • Publication number: 20060066219
    Abstract: A display panel includes a transistor array substrate which has a plurality of transistors including at least a driving transistor, and a plurality of pixel electrodes electrically connected to the driving transistor of the plurality of transistors. A plurality of light-emitting layers are provided on the pixel electrodes. A counter electrode is provided on the light-emitting layers. Each of a plurality of interconnections is arranged between the pixel electrodes adjacent to each other and electrically connected to the counter electrode.
    Type: Application
    Filed: September 26, 2005
    Publication date: March 30, 2006
    Applicant: Casio Computer Co., Ltd.
    Inventors: Satoru Shimoda, Manabu Takei, Tomoyuki Shirasaki, Jun Ogura